• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cáculo - Limites - função contínua num intervalo

Cáculo - Limites - função contínua num intervalo

Mensagempor Antonio H V Araujo » Sáb Nov 14, 2015 22:24

Como resolver esta questão. Existe outro raciocínio?

Seja a função f definida em [-3, 3] por g(x) = \sqrt[]{9 - {x}^{2}}. Verifique se f é contínua nesse intervalo.

Resolução.
Determinando os limites laterais, temos:

\lim_{x\rightarrow-3^{+}}g(x)=0



[/tex]

Como queremos saber se é contínua no intervalo [-3, 3], consideramos apenas o limite de -3 pela direita e o limite de 3 pela esquerda, como os valores são iguais, e f(-3) = f(3) = 0, a função é contínua nesse intervalo. ok
Antonio H V Araujo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 14, 2015 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em SI
Andamento: cursando

Re: Cáculo - Limites - função contínua num intervalo

Mensagempor Cleyson007 » Seg Nov 16, 2015 07:29

Bom dia Antônio!

Seja bem-vindo ao AjudaMatemática :y:

Uma outra forma de raciocínio seria enxergar que a função g(x) é uma composição de funções contínuas, repare que:

\alpha(x)=\sqrt[]{x}

\beta(x)=9-x^2

Repare que ? e ? são funções contínuas. Logo, a função g(x) também é contínua.

Caso queira conhecer o meu trabalho enquanto professor de Matemática, acesse: viewtopic.php?f=151&t=13614

Posso lhe ajudar bastante em seus estudos.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.