• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação produto/quociente

inequação produto/quociente

Mensagempor vhcs29 » Qui Abr 01, 2010 12:32

Tenho dúvidas na resolução da seguinte inequação:

\frac{x+1}{\ x+2} > \frac{x+3}{\ x+4}

O que fiz foi, passa o 2º termo p/ o primeiro, ficaria:

\frac{x+1}{\ x+2} - \frac{x+3}{\ x+4} > 0

depois, mmc;

\frac{(x+1)(x+4) - (x+3)(x+2)}{\ (x+2)(x+4)} > 0

Depois eu não sei o que fazer. Sei que o resultado esperado é {-4<x<-2}. Se alguém puder me dar uma ajuda eu agradeço.
vhcs29
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 01, 2010 12:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: inequação produto/quociente

Mensagempor estudandoMat » Sex Abr 02, 2010 11:00

Olá.
Bom desenvolvendo a conta na parte de cima da fraçao:

{x}^{2}+5x+4-{x}^{2}-5x-6 = +4-6 = -2

ficando:
\frac{-2}{(x+2)(x+4)}>0

agora desenvolvendo cada parte da fração:
1°Resultado: -2 (é sempre negativo ,"no varal")
2° Resultado: x+2 => x = -2 (eq. do primeiro grau , Regra do CAMA, (primeiro) sinal Contrario de "a" (depois) Mesmo sinal de "a")
3° Resultado: x+4 => x = -4 (eq. do primeiro grau , Regra do CAMA)

"Varal para achar o resultado"
_______ -4 ____-2__________
- 2 - - - - - - - - - - - - - -
(x+2) - - - - - - - 0 + + + Sinal seguindo a regra do CAMA
(x+4) - - 0 + + + + + + + Mesma coisa
result - -0 + + + 0 - - - -

Ele que resultados onde o x>0 (Positivo) , que é entre -4 < x < -2
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: inequação produto/quociente

Mensagempor vhcs29 » Sex Abr 02, 2010 12:59

Valeu!
vhcs29
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 01, 2010 12:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59