• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Composta

Função Composta

Mensagempor Karollmb » Sex Mai 22, 2015 11:54

Seja k uma constante real, f e g funções definidas em R (real) tais que f(x)= kx+1 e g(x)=13x+ k. Os valores de k que tornam a igualdade fog=gof verdadeira são:
A) -3 ou 3
B) -4 ou 4
C) -4 ou 3
D) -3 ou 4
E) -4 ou 3
Karollmb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mai 22, 2015 11:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função Composta

Mensagempor DanielFerreira » Sáb Mai 23, 2015 14:23

Olá Karol, seja bem-vinda!

Encontremos a função composta (f \circ g)(x),

\\ (f \circ g)(x) = f(g(x)) \\\\ (f \circ g)(x) = k(13x + k) + 1 \\\\ (f \circ g)(x) = 13kx + k^2 + 1


Encontremos, agora, a função composta (g \circ f)(x),

\\ (g \circ f)(x) = g(f(x)) \\\\ (g \circ f)(x) = 13(kx + 1) + k \\\\ (g \circ f)(x) = 13kx + k + 13


Igualando-as,

\\ (f \circ g)(x) = (g \circ f)(x) \\\\ 13kx + k^2 + 1 = 13kx + k + 13 \\\\ \cancel{13kx} - \cancel{13kx} + k^2 - k + 1 - 13 = 0 \\\\ k^2 - k - 12 = 0 \\\\ (...)


Para encontrar os valores de k basta resolver a equação do 2º grau acima.

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Função Composta

Mensagempor Karollmb » Seg Mai 25, 2015 00:56

Ajudou muito, estava errando por falta de atenção.. O raciocínio foi parecido... Obrigada!!!
Karollmb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mai 22, 2015 11:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}