• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor lucianafalmeida » Qua Mar 24, 2010 16:31

Um corpo que cai. Uma pedra presa a um barbante com 1 metro de comprimento move-se percorrendo uma trajetória circular de raio 1 metro no sentido anti-horário em um plano vertical. O centro do círculo de rotação está localizado a uma altura do solo igual a seis vezes o seu perímetro. Durante os três primeiros minutos a função que estabelece a distância percorrida em relação ao tempo é dada pela expressão

u(t) = 2?(8t - t2).

O movimento se inicia quando a posição da pedra no círculo forma um ângulo nulo com o eixo horizontal. No instante t = 3 segundos o barbante se parte e daí para frente a pedra passa a percorrer uma trajetória vertical. A função que descreve sua altura em relação ao solo a partir do terceiro segundo é dada pela expressão

h(t) = -(1/2)gt2 + (4? + 3g)t - (9/2)g.

Baseado nas informações acima responda:
• Quando a pedra atinge a altura máxima?
• Quando e onde ela atinge o solo?
• Quanto tempo ela gastou para completar a primeira volta?
• Quanto tempo ela levou para completar a segunda volta?
• Compare as duas durações.
• No instante t = 3 quantas voltas ela havia completado?

(b) Considere a função linear afim y = f(x) = ax + b. Identifique as regiões de crescimento e decrescimento da grandeza y em ambos os casos, a > 0 e a < 0. Identifique os valores da grandeza x para os quais a grandeza y será positiva, negativa e nula em ambos os casos, a > 0 e a < 0. Verifique que as funções lineares afins não apresentam valores com ambigüidades e nem valores com inexistência de solução.

(c) Calcule a distância de um ponto (x0, y0) a uma reta que passa pela origem, y = ax. Verifique que essa distância d é dada por d2 = (y0 - ax0)2/(a2 +1).
lucianafalmeida
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mar 24, 2010 16:26
Formação Escolar: GRADUAÇÃO
Área/Curso: farmacia
Andamento: cursando

Re: Função

Mensagempor Neperiano » Seg Jul 04, 2011 22:40

Ola

Você postou 4 exercícios completos, acho que io objetivo deste site é resolver duvidas e não questões inteiras, favor postar qual sua dúvida e não uma questão inteira.

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?