• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do Triângulo

Área do Triângulo

Mensagempor Padoan » Qui Fev 11, 2010 18:36

E aqui... eu também estava em dúvida nessa:

Em um triângulo equilátero, ABE, cujo lado mede a , e um quadrado, BCDE, cujo lado também mede a. Com base nessas informações, é CORRETO afirmar que a área do triângulo
ABC é

a) a² / 3
b) a² / 4
c) a² ?3 / 4
d) a² ?3 / 4

No caso seria uma piramide quadrangular com os lados de valor a, então eu fiz da seguinte forma:

a = l² ?3 /4
a = a² ?3/4

Beleza, opção C, porém no gabarito diz ser opção B... alguem saberia me ajudar?
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área do Triângulo

Mensagempor MarceloFantini » Sex Fev 12, 2010 01:10

Boa noite Padoan.

O triângulo pedido não é equilátero. Veja o desenho:

Imagem

Para calcular a área basta usar:

A_{\Delta ABC} = \frac{1}{2} ab sen \theta

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área do Triângulo

Mensagempor Padoan » Sex Fev 12, 2010 12:13

Ainda estou meio boiando...
Tipo, temos um quadrado de valores = a, um triangulo equilatero de lados de valores = a e temos que descobrir a area de um triangulo com base = a e um lado = a... ainda não entendi S:

Edit:

Aqui, consegui passar a imagem para cá... acabou que eu pensei que era uma piramide, eu so retardado auhauhau

Imagem
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área do Triângulo

Mensagempor Molina » Sex Fev 12, 2010 13:03

Temos que trata-se de um triângulo isósceles com dois lados a e o lado AC (base do triângulo) que não conhecemos. Temos a informação que o ângulo B vale 60+90=150 graus. E com isso sabemos os dois outros ângulos, já que é um triângulo isósceles: os ângulos A e C possuem 15 graus.

Acho que podemos encontrar o valor do segmento AC usando a lei dos seno ou a lei do cosseno.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Área do Triângulo

Mensagempor Padoan » Sex Fev 12, 2010 13:08

Ah, eu pedi pro professor de física... matemática só semana que vem D:
Ele disse isso mesmo, tinha que usar lei do seno/cosseno

Tenso que isso eu ainda não aprendi no colégio.
Mas como voce soube que B vale 150?
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área do Triângulo

Mensagempor Molina » Sex Fev 12, 2010 13:11

Padoan escreveu:Mas como voce soube que B vale 150?

O ângulo do triângulo é 60 graus, pois trata-se de um triângulo equilátero. E o ângulo do quadrado é 90 graus. Somando os dois chegamos em 150 graus.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Área do Triângulo

Mensagempor MarceloFantini » Sex Fev 12, 2010 13:42

Boa tarde.

Não é para calcular o outro lado, portanto não precisa usar teorema do seno ou cosseno. Basta usar o teorema de calcular a área tendo dois lados e o ângulo entre eles (não sei se tem nome ao certo). Veja:

Imagem

Demonstração

Seja o triângulo ABC um triângulo qualquer e \overline {CD} sua altura. Sua área é definida como:

A = \frac{1}{2} \times c \times h

Calculando o seno de alpha, vemos que:

sen \alpha = \frac{h}{b}

Portanto:

h = sen \alpha \times b

Logo, encontramos que a área de um triângulo qualquer pode ser calculada como:

A = \frac {1}{2} \times c \times b \times sen \alpha

Esse teorema é importante e prático, procure lembrar dele.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}