• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações do Plano] Geometria Analitica

[Equações do Plano] Geometria Analitica

Mensagempor caique » Qui Abr 23, 2015 00:22

Favor ajudar com exercicio em anexo.

Att,
Anexos
avga.jpg
Exercicio
caique
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 23, 2015 00:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da computacao
Andamento: cursando

Re: [Equações do Plano] Geometria Analitica

Mensagempor DanielFerreira » Qua Abr 29, 2015 20:10

Dada a equação \pi : \left\{\begin{matrix}x = 1 - \mu + 0\lambda \\ y = 2 + 2\mu + 0\lambda \\ z = 1 + 0\mu + \lambda \end{matrix}\right. tiramos dois vetores diretores, são eles: \vec{u} = (- 1, 2, 0) e \vec{v} = (0, 0, 1).

Calculemos o produto vetorial entre eles afim de encontrar o vetor normal...

\\ \vec{u} \wedge \vec{v} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\ 
- 1 & 2 & 0 \\ 
0 & 0 & 1 
\end{vmatrix} \\\\ \vec{u} \wedge \vec{v} = 2\vec{i} + \vec{j} = \\\\ \boxed{\vec{u} \wedge \vec{v} = (2, 1, 0)}

Daí, fazendo \mu = \lambda = 0 obtemos (1, 2, 1) que pertence à equação do plano.

\\ ax + by + cz + d = 0 \\ 2x + y + 0 + d = 0 \\ 2 \cdot 1 + 2 + d = 0 \\ \boxed{d = - 4}

Por fim, temos que a equação do plano é dada por \boxed{\boxed{2x + y - 4 = 0}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}