• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] Não estou conseguindo resolver esse exercício

[Fatoração] Não estou conseguindo resolver esse exercício

Mensagempor Ze Birosca » Qua Fev 04, 2015 18:55

Sendo: x - \frac{1}{x} = 3

dertemine o valor de x^4 + \frac{1}{x^4}

o gabarito marca 119, mas eu não faço a minima de ideia de como chegar a esse resultado.

A primeira coisa que eu pensei em fazer foi 3^4, mas acho que estou errado.
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Russman » Qua Fev 04, 2015 20:06

Tome x - \frac{1}{x} = a. Agora, elevemos ao quadrado.

\left ( x-\frac{1}{x} \right )^2 = x^2-1-1+\frac{1}{x^2} = x^2+\frac{1}{x^2} - 2

Portanto, x^2+\frac{1}{x^2} = a^2 + 2.

Repitamos o processo.

\left (x^2+\frac{1}{x^2}   \right )^2= x^4 +1+1+\frac{1}{x^4} = x^4 + \frac{1}{x^4}+2

Portanto, x^4 + \frac{1}{x^4}+2 = (a^2+2)(a^2+2) \Rightarrow x^4 + \frac{1}{x^4} = (a^2+2)^2 -2.

Fazendo a=3 você obtém 119.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Ze Birosca » Qua Fev 04, 2015 20:49

obrigado Russman, mas não estou conseguindo enteder essa parte aqui:

\left ( x-\frac{1}{x} \right )^2 = x^2-1-1+\frac{1}{x^2} = x^2+\frac{1}{x^2} - 2

de onde vêm esse 1-1?

se eu fizesse:

\left ( x-\frac{1}{x} \right )^2 = x^2-\frac{1^2}{x^2}

eu estaria errando?
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Russman » Qua Fev 04, 2015 20:58

Certamente.

Lembre-se que (a+b)^2 = a^2 +2ab+b^2 para todo a e b reais.

É fácil verificar a validade desta identidade. Tome, por exemplo, a=2 e b=3. Assim,

(2+3)^2 = 2^2 + 2.2.3 + 3^2 = 4  + 12 +9 = 25

como devia ser, já que sabemos que (2+3)^2 = 5^2 = 25.

Agora, tome a=x e b = -\frac{1}{x}.

Assim, seguindo a identidade,

\left (x-\frac{1}{x}   \right )^2= x^2  +2.x.\frac{1}{x}+\frac{1}{x}.\frac{1}{x} =x^2+2+\frac{1}{x^2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Ze Birosca » Qua Fev 04, 2015 21:56

Ah, agora entendi.

fiz agora com o a = 3 e cheguei ao resultado.

Obrigado.
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}