por ticofa2 » Ter Jan 20, 2015 00:20
Boas! Eu ando com um problema já há uns dias e não o consigo resolver... a questão é a seguinte:
Eu tenho dois valores... X e Y...
X1 = Y1
E
X2= Y2... Ou seja, tenho dois limites...
Neste caso eu tenho
600 = 0.1
900 = 1
O meu objectivo é descobrir o valor de Y (sendo ele proporcional ao do X) entre cada um dos limites.... Por Exemplo:
se 600 = 0.1
E
900 = 1
Quanto equivale o Y ao numero 780? Ou Talvez o numero 820? O meu objectivo é enquanto o X sobe/Desce... o Y sobe/desce proporcionalmente ao X tendo em conta os dois limites...
Eu já tentei as seguintes formas sem sucesso...
600 + 900 / (o valor que eu disse Ex:) 700;
tambem tentei
600 + 900 / (o valor que eu quero Ex:) 700 + 600;
E tentei outra forma que não me lembro, mas também não deu resultado...
Por exemplo, eu sei que a metade de ambos seria:
750 = 0.55;
Mas não consigo achar forma de resolver este problema... Agradecia imenso uma ajuda

!
-
ticofa2
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Jan 20, 2015 00:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Programação
- Andamento: cursando
por Russman » Ter Jan 20, 2015 05:41
Se 900 = 1 e 600=0.1 então a situação não se trata de uma proporcionalidade simples uma vez que, se 900 = 1, então

mas 90 não é igual a 600. Assim, acho que seria melhor você atribuir a este uma
função. Faça os valores variados serem

e os correspondentes

.
Daí, faça

e

.
Já que temos apenas dois pontos, é interessante supor que a função( e também já que você busca algo mais parecido com proporcionalidade simples) seja um polinômio de 1° grau. Assim, supomos

onde a e b são constantes reais que fazem valer


.
Daí,

e

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como resolver
por thyssa » Ter Abr 19, 2011 22:06
- 1 Respostas
- 2786 Exibições
- Última mensagem por FilipeCaceres

Ter Abr 19, 2011 23:31
Progressões
-
- Como Resolver.
por 380625 » Dom Set 11, 2011 14:36
- 1 Respostas
- 1752 Exibições
- Última mensagem por MarceloFantini

Dom Set 11, 2011 19:40
Matrizes e Determinantes
-
- Como resolver!!
por MW2 » Qui Jan 05, 2012 16:44
- 1 Respostas
- 1781 Exibições
- Última mensagem por Arkanus Darondra

Qui Jan 05, 2012 18:41
Funções
-
- Como resolver ??
por MW2 » Qui Jan 12, 2012 16:34
- 1 Respostas
- 1408 Exibições
- Última mensagem por Arkanus Darondra

Qui Jan 12, 2012 22:29
Matemática Financeira
-
- Como resolver?
por Cleyson007 » Seg Nov 12, 2012 11:05
- 3 Respostas
- 1987 Exibições
- Última mensagem por young_jedi

Seg Nov 12, 2012 21:38
Física
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.