• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Proporcionalidade] Como resolver proporcionalidade

[Proporcionalidade] Como resolver proporcionalidade

Mensagempor ticofa2 » Ter Jan 20, 2015 00:20

Boas! Eu ando com um problema já há uns dias e não o consigo resolver... a questão é a seguinte:

Eu tenho dois valores... X e Y...

X1 = Y1
E
X2= Y2... Ou seja, tenho dois limites...

Neste caso eu tenho

600 = 0.1

900 = 1


O meu objectivo é descobrir o valor de Y (sendo ele proporcional ao do X) entre cada um dos limites.... Por Exemplo:

se 600 = 0.1
E
900 = 1

Quanto equivale o Y ao numero 780? Ou Talvez o numero 820? O meu objectivo é enquanto o X sobe/Desce... o Y sobe/desce proporcionalmente ao X tendo em conta os dois limites...


Eu já tentei as seguintes formas sem sucesso...

600 + 900 / (o valor que eu disse Ex:) 700;

tambem tentei

600 + 900 / (o valor que eu quero Ex:) 700 + 600;


E tentei outra forma que não me lembro, mas também não deu resultado...

Por exemplo, eu sei que a metade de ambos seria:

750 = 0.55;

Mas não consigo achar forma de resolver este problema... Agradecia imenso uma ajuda :)!
ticofa2
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jan 20, 2015 00:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Programação
Andamento: cursando

Re: [Proporcionalidade] Como resolver proporcionalidade

Mensagempor Russman » Ter Jan 20, 2015 05:41

Se 900 = 1 e 600=0.1 então a situação não se trata de uma proporcionalidade simples uma vez que, se 900 = 1, então

\frac{900}{10} = \frac{1}{10} = 0.1

mas 90 não é igual a 600. Assim, acho que seria melhor você atribuir a este uma função. Faça os valores variados serem x e os correspondentes f(x).

Daí, faça f(1) = 900 e f(0.1) = 600.

Já que temos apenas dois pontos, é interessante supor que a função( e também já que você busca algo mais parecido com proporcionalidade simples) seja um polinômio de 1° grau. Assim, supomos

f(x) = ax + b

onde a e b são constantes reais que fazem valer

a+b = 900
0.1 a + b = 600.

Daí, a+b - 0.1a-b = 900-600 \Rightarrow 0.9a=300 \Rightarrow a = \frac{1000}{3} e b = 600 - \frac{100}{3}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D