por Tatymtv » Ter Set 16, 2014 01:27
Passei a tarde toda tentando achar a solução desse problema.
Um determinado servidor utilizado no gerenciamento de um sistema foi monitorado quanto à utilização de sua capacidade de processamento. Após um tempo de análise, verificou-se que a relação entre a quantidade de Q de usuários (em mil pessoas) conectadas ao sistema se relaciona com o tempo T (em horas) por meio de uma função de segundo grau da forma Q = T2+ 8.T .
Com base nessa informação:
a) Descreva que tipo de parábola representa a relação entre usuários e tempo. Justifique.
b) Supondo que o servidor entre em operação às 8 horas da manhã, em que momento
ocorrerá o maior pico de usuários? Em que tempo o número de usuários voltará a
ficar igual a zero?
-
Tatymtv
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Set 16, 2014 00:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Agronegócio
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função do segundo grau
por gustavoluiss » Dom Nov 28, 2010 17:27
- 7 Respostas
- 5229 Exibições
- Última mensagem por alexandre32100

Qua Dez 01, 2010 15:39
Álgebra Elementar
-
- Função de segundo grau
por anfran1 » Qua Ago 15, 2012 16:23
- 6 Respostas
- 3322 Exibições
- Última mensagem por e8group

Qua Ago 15, 2012 20:39
Funções
-
- Função de segundo grau simples
por Allanx » Sáb Mar 26, 2011 00:02
- 8 Respostas
- 4210 Exibições
- Última mensagem por Allanx

Dom Mar 27, 2011 00:10
Funções
-
- [DUVIDA]função de segundo grau
por julianafb » Ter Mar 05, 2013 01:33
- 1 Respostas
- 2454 Exibições
- Última mensagem por Russman

Ter Mar 05, 2013 02:04
Álgebra Linear
-
- Cálculo do lucro com função do segundo grau
por chenz » Qua Jun 02, 2010 10:07
- 2 Respostas
- 7226 Exibições
- Última mensagem por chenz

Qua Jun 09, 2010 11:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.