por Tatymtv » Ter Set 16, 2014 01:27
Passei a tarde toda tentando achar a solução desse problema.
Um determinado servidor utilizado no gerenciamento de um sistema foi monitorado quanto à utilização de sua capacidade de processamento. Após um tempo de análise, verificou-se que a relação entre a quantidade de Q de usuários (em mil pessoas) conectadas ao sistema se relaciona com o tempo T (em horas) por meio de uma função de segundo grau da forma Q = T2+ 8.T .
Com base nessa informação:
a) Descreva que tipo de parábola representa a relação entre usuários e tempo. Justifique.
b) Supondo que o servidor entre em operação às 8 horas da manhã, em que momento
ocorrerá o maior pico de usuários? Em que tempo o número de usuários voltará a
ficar igual a zero?
-
Tatymtv
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Set 16, 2014 00:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Agronegócio
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função do segundo grau
por gustavoluiss » Dom Nov 28, 2010 17:27
- 7 Respostas
- 5156 Exibições
- Última mensagem por alexandre32100

Qua Dez 01, 2010 15:39
Álgebra Elementar
-
- Função de segundo grau
por anfran1 » Qua Ago 15, 2012 16:23
- 6 Respostas
- 3291 Exibições
- Última mensagem por e8group

Qua Ago 15, 2012 20:39
Funções
-
- Função de segundo grau simples
por Allanx » Sáb Mar 26, 2011 00:02
- 8 Respostas
- 4164 Exibições
- Última mensagem por Allanx

Dom Mar 27, 2011 00:10
Funções
-
- [DUVIDA]função de segundo grau
por julianafb » Ter Mar 05, 2013 01:33
- 1 Respostas
- 2437 Exibições
- Última mensagem por Russman

Ter Mar 05, 2013 02:04
Álgebra Linear
-
- Cálculo do lucro com função do segundo grau
por chenz » Qua Jun 02, 2010 10:07
- 2 Respostas
- 7214 Exibições
- Última mensagem por chenz

Qua Jun 09, 2010 11:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.