• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Exercicio envolvendo soma de cos.

[Trigonometria] Exercicio envolvendo soma de cos.

Mensagempor combatente20 » Seg Mai 26, 2014 16:56

Fala galera, não estou conseguindo resolver a seguinte questão, se puderem me dar uma força.

-A soma cos² 0º + cos² 2º + cos² 4º + cos² 6º + ... + cos² 358º + cos² 360º é igual a:

(A) 316.
(B) 270.
(C) 181.
(D) 180.
(E) 91.

Quem puder explicar uma maneira de resolver ficarei grato.
combatente20
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 26, 2014 16:51
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria] Exercicio envolvendo soma de cos.

Mensagempor e8group » Ter Mai 27, 2014 00:46

Dica :

Podemos agrupar as parcelas dos cossenos dos quadrantes em comum ,
isto é , designando a soma requerida de S temos

S = (cos^2 0 +  cos^2 2 + \hdots + cos^2( 90)  ) + ( cos^2(92) + \hdots + cos^2 (180) )  +  (cos^2(182) + \hdots + cos^2(270)) +  (cos^2(272) + \hdots + cos^2(360) ) .

Agora use que sin^2(\beta) = cos^2(\beta - 90) . Com isso ,

cos^2(92) = sin^2(2)  , \hdots , cos^2(180) = sin^2(90) ....

cos^2(272) = sin^2(182) , ... . Em seguida basta utilizar associatividade e na sequência relação trigonométrica fundamental ..
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}