por luc7 » Seg Mar 31, 2014 09:23
O inverso de um número natural somado com o dobro de seu antecessor e 3/4 de seu sucessor é igual a 10. O
número em questão é
A) 2. B) 3. C) 4. D) 5. E) 6.
gabarito = c
Tentativa:
Não sei se é problema meu em interpretar, mas estou montando assim:
1/x+2(x-1)+3/4(x+1)=10
1/x+2x-2+3x/4+3/4=10
1/x+2x+3x/4=12-3/4
Termino de resolver e não bate com o resultado...
-
luc7
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 31, 2014 09:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por n0thing » Seg Mar 31, 2014 15:35
Você etá montando certo, porem resolvendo errado. Como tem fração, tem que tirar o mmc que será 4n

como o enunciado diz que n é natural então o resultado é 4
-
n0thing
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 31, 2014 15:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por luc7 » Seg Mar 31, 2014 18:07
Muito obrigado!
-
luc7
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 31, 2014 09:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação - como montar a equação desse problema?
por _Manu » Qua Jul 04, 2012 03:37
- 7 Respostas
- 13216 Exibições
- Última mensagem por _Manu

Qui Jul 05, 2012 01:49
Sistemas de Equações
-
- Equação - Como resolver problema com equação
por macedo1967 » Seg Set 25, 2017 10:13
- 3 Respostas
- 8707 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:10
Equações
-
- Equação - Problema
por ginrj » Qui Jun 11, 2009 15:52
- 5 Respostas
- 3390 Exibições
- Última mensagem por ginrj

Sáb Jun 13, 2009 18:34
Sistemas de Equações
-
- [ PROBLEMA ] Equação
por gabrielMAT » Qua Out 19, 2011 16:45
- 2 Respostas
- 1845 Exibições
- Última mensagem por gabrielMAT

Qua Out 19, 2011 19:58
Sistemas de Equações
-
- Problema de equação
por TiagoFERD » Sáb Mar 10, 2012 09:59
- 2 Respostas
- 1439 Exibições
- Última mensagem por TiagoFERD

Sáb Mar 10, 2012 10:48
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.