• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Análise Combinatória] Exercício - URGENTE

[Análise Combinatória] Exercício - URGENTE

Mensagempor Pessoa Estranha » Qui Dez 19, 2013 22:31

"Um homem possui oito pares de meias todos distintos. De quantas formas ele pode selecionar duas meias, sem que elas sejam do mesmo par ?"

Minha resolução: Ao total, o homem tem 16 meias, mas estamos interessados em calcular o número de conjuntos possíveis de duas meias distintas. Logo, usufruindo de uma meia de cada par, isto é, 8 meias diferentes, e tomando 2 a 2, teremos C8,2 = 28 formas possíveis.

Está errado. A resposta certa é 112.

Alguém pode ajudar, por favor ?!

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Análise Combinatória] Exercício - URGENTE

Mensagempor Carlinda » Sex Dez 20, 2013 11:45

Boa tarde,

Eu resolveria da seguinte forma, 8 pares de meias(16 unidades). Pretendemos formar grupos de 2 elementos, por isso vamos agrupar das 8 unidades duas a duas 8 para a primeira opção e 7 para a segunda. Todos os pares são formados desta forma, por isso multiplicamos esse resultado por 2 para contabilizar as meias excluídas na primeira selecção.
(8x7)x2=112
Carlinda
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Dez 20, 2013 11:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em Matematica
Andamento: formado

Re: [Análise Combinatória] Exercício - URGENTE

Mensagempor Pessoa Estranha » Sex Dez 20, 2013 18:36

Olá ! Obrigada por responder. Eu não entendi o seguinte trecho:

Carlinda escreveu: Todos os pares são formados desta forma, por isso multiplicamos esse resultado por 2 para contabilizar as meias excluídas na primeira selecção.
(8x7)x2=112
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Análise Combinatória] Exercício - URGENTE

Mensagempor Carlinda » Seg Dez 23, 2013 09:06

Olá bom dia,

Como se tratam de pares de meias, ou seja grupos de 2 unidades, e pretendemos seleccionar apenas 1 meia de cada par, retiramos, a cada par apenas uma unidade. Resolvemos o exercicio considerando 1 meia de cada par, posteriormente temos de multiplicar por 2, dado que temos de considerar as meias excluidas na primeira fase.
Carlinda
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Dez 20, 2013 11:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em Matematica
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59