• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Tenho dúvidas

Tenho dúvidas

Mensagempor israel jonatas » Ter Nov 12, 2013 22:46

O comandande de uma destacamento militar ordenou que seus subordinados se organizassem em filas. A primeira fila era composta por 14 soldados, a segunda por 18 soldados, a terceira por 22 soldados , e assim, sucessivamente. Sabe-se que o número de soldados deste destacamento é igual 1550. Dessa forma, é correto que serão formadas:

A) 18 filas
B) 20 filas
C) 23 filas
D) 25 filas
E) 30 filas
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Tenho dúvidas

Mensagempor Augusto Evaristo » Dom Nov 17, 2013 19:58

Observe que a diferente de uma fila para seu sucessor é de quatro soldados

18-14=4

22-18=4

Logo, temos uma razão aritmética de valor 4, o que implica em uma progressão aritmética. Você vai precisar das formulas do e-ésimo elemento e da soma de n termos, formando um sistema do primeiro grau. Tenta resolver com essa dica, se não conseguir, posta o que você tentou fazer.

{a}_{n}={a}_{1}+(n-1)r

{S}_{n}=n\frac{({a}_{n}+{a}_{1})}{2}
Matemática não é uma arte
É a linguagem universal
Arte é conhece-la!
Avatar do usuário
Augusto Evaristo
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Out 15, 2010 18:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Tenho dúvidas

Mensagempor israel jonatas » Seg Nov 18, 2013 22:44

Augusto Evaristo escreveu:Observe que a diferente de uma fila para seu sucessor é de quatro soldados

18-14=4

22-18=4

Logo, temos uma razão aritmética de valor 4, o que implica em uma progressão aritmética. Você vai precisar das formulas do e-ésimo elemento e da soma de n termos, formando um sistema do primeiro grau. Tenta resolver com essa dica, se não conseguir, posta o que você tentou fazer.

{a}_{n}={a}_{1}+(n-1)r

{S}_{n}=n\frac{({a}_{n}+{a}_{1})}{2}
Augusto Evaristo escreveu:Observe que a diferente de uma fila para seu sucessor é de quatro soldados

18-14=4

22-18=4

Logo, temos uma razão aritmética de valor 4, o que implica em uma progressão aritmética. Você vai precisar das formulas do e-ésimo elemento e da soma de n termos, formando um sistema do primeiro grau. Tenta resolver com essa dica, se não conseguir, posta o que você tentou fazer.

{a}_{n}={a}_{1}+(n-1)r

{S}_{n}=n\frac{({a}_{n}+{a}_{1})}{2}




bom, R=4 usando a formula an= a1+(n-1)r ai fiquei por aqui pós tenho dúvidas no valor do N.
An= 1550 1550= 4+(n-1)4
A1= 4 1550=-4+4+4n
N=? 1550=4n
n=1550 N= 387,5
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Tenho dúvidas

Mensagempor Augusto Evaristo » Qua Nov 20, 2013 01:15

Muito bem. Você pensou na questão, e assim se aprende matemática. Pensando! Mas vamos pensar um pouco mais.
O n-esimo elemento (an) não pode ser 1550, pois este valor corresponde a quantidade de soldados. O primeiro elemento (a1) seria igual a 14, o número de soldados da primeira fila. Suas incógnitas são o numero de filas, n, e o n-esimo elemento, an.
an=a1+(n-1).r => an=14+(n-1).4
=> an=10-4.n

Sn=n. (a1+an)/2 => 1550=n. (14+an)/2

Substituindo an da 1a equação na 2a equação, temos:
1550=n. (14+10+4.n)/2, que dá em uma equação do segundo grau, n^2+6.n-775=0, cuja solução positiva é 25.
Logo, o total de filas a serem formadas são 25. Caso fosse pedido o e-nesimo elemento, era só substituir o valor de n em qualquer das duas primeiras equações.
Bons estudos!
Matemática não é uma arte
É a linguagem universal
Arte é conhece-la!
Avatar do usuário
Augusto Evaristo
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Out 15, 2010 18:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Tenho dúvidas

Mensagempor israel jonatas » Sex Nov 22, 2013 20:30

Augusto Evaristo escreveu:Muito bem. Você pensou na questão, e assim se aprende matemática. Pensando! Mas vamos pensar um pouco mais.
O n-esimo elemento (an) não pode ser 1550, pois este valor corresponde a quantidade de soldados. O primeiro elemento (a1) seria igual a 14, o número de soldados da primeira fila. Suas incógnitas são o numero de filas, n, e o n-esimo elemento, an.
an=a1+(n-1).r => an=14+(n-1).4
=> an=10-4.n

Sn=n. (a1+an)/2 => 1550=n. (14+an)/2

Substituindo an da 1a equação na 2a equação, temos:
1550=n. (14+10+4.n)/2, que dá em uma equação do segundo grau, n^2+6.n-775=0, cuja solução positiva é 25.
Logo, o total de filas a serem formadas são 25. Caso fosse pedido o e-nesimo elemento, era só substituir o valor de n em qualquer das duas primeiras equações.
Bons estudos!


Perfeito fico muito grato. Muito obrigado mesmo, isso nos motiva ainda mais a busca por aprimoramento. Só uma dúvida é formula de PA é dividida por 2 certo, mas não seria 12 em vez de 6?
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Tenho dúvidas

Mensagempor Augusto Evaristo » Sáb Nov 23, 2013 18:54

Olá!

A fórmula da soma dos n termos é:

{S}_{n}=\frac{n}{2}*({a}_{n}+{a}_{1})

Verifique que no desenvolvimento da expressão houve a simplificação de 24/2, que resulta em 12, mas há uma segunda simplificação 12/2 que o reduz para 6. Verifique ainda que ocorreram simplificações em todos os elementos da expressão.

Bons estudos!
Matemática não é uma arte
É a linguagem universal
Arte é conhece-la!
Avatar do usuário
Augusto Evaristo
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Out 15, 2010 18:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Tenho dúvidas

Mensagempor israel jonatas » Sáb Nov 23, 2013 23:19

Augusto Evaristo escreveu:Olá!

A fórmula da soma dos n termos é:

{S}_{n}=\frac{n}{2}*({a}_{n}+{a}_{1})

Verifique que no desenvolvimento da expressão houve a simplificação de 24/2, que resulta em 12, mas há uma segunda simplificação 12/2 que o reduz para 6. Verifique ainda que ocorreram simplificações em todos os elementos da expressão.

Bons estudos!



Entendi, valeu mesmo.
israel jonatas
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 14, 2013 13:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.