por israel jonatas » Ter Nov 12, 2013 22:46
O comandande de uma destacamento militar ordenou que seus subordinados se organizassem em filas. A primeira fila era composta por 14 soldados, a segunda por 18 soldados, a terceira por 22 soldados , e assim, sucessivamente. Sabe-se que o número de soldados deste destacamento é igual 1550. Dessa forma, é correto que serão formadas:
A) 18 filas
B) 20 filas
C) 23 filas
D) 25 filas
E) 30 filas
-
israel jonatas
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 14, 2013 13:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Augusto Evaristo » Dom Nov 17, 2013 19:58
Matemática não é uma arte
É a linguagem universal
Arte é conhece-la!
-

Augusto Evaristo
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Out 15, 2010 18:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por israel jonatas » Seg Nov 18, 2013 22:44
bom, R=4 usando a formula an= a1+(n-1)r ai fiquei por aqui pós tenho dúvidas no valor do N.
An= 1550 1550= 4+(n-1)4
A1= 4 1550=-4+4+4n
N=? 1550=4n
n=1550 N= 387,5
-
israel jonatas
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 14, 2013 13:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Augusto Evaristo » Qua Nov 20, 2013 01:15
Muito bem. Você pensou na questão, e assim se aprende matemática. Pensando! Mas vamos pensar um pouco mais.
O n-esimo elemento (an) não pode ser 1550, pois este valor corresponde a quantidade de soldados. O primeiro elemento (a1) seria igual a 14, o número de soldados da primeira fila. Suas incógnitas são o numero de filas, n, e o n-esimo elemento, an.
an=a1+(n-1).r => an=14+(n-1).4
=> an=10-4.n
Sn=n. (a1+an)/2 => 1550=n. (14+an)/2
Substituindo an da 1a equação na 2a equação, temos:
1550=n. (14+10+4.n)/2, que dá em uma equação do segundo grau, n^2+6.n-775=0, cuja solução positiva é 25.
Logo, o total de filas a serem formadas são 25. Caso fosse pedido o e-nesimo elemento, era só substituir o valor de n em qualquer das duas primeiras equações.
Bons estudos!
Matemática não é uma arte
É a linguagem universal
Arte é conhece-la!
-

Augusto Evaristo
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Out 15, 2010 18:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por israel jonatas » Sex Nov 22, 2013 20:30
Augusto Evaristo escreveu:Muito bem. Você pensou na questão, e assim se aprende matemática. Pensando! Mas vamos pensar um pouco mais.
O n-esimo elemento (an) não pode ser 1550, pois este valor corresponde a quantidade de soldados. O primeiro elemento (a1) seria igual a 14, o número de soldados da primeira fila. Suas incógnitas são o numero de filas, n, e o n-esimo elemento, an.
an=a1+(n-1).r => an=14+(n-1).4
=> an=10-4.n
Sn=n. (a1+an)/2 => 1550=n. (14+an)/2
Substituindo an da 1a equação na 2a equação, temos:
1550=n. (14+10+4.n)/2, que dá em uma equação do segundo grau, n^2+6.n-775=0, cuja solução positiva é 25.
Logo, o total de filas a serem formadas são 25. Caso fosse pedido o e-nesimo elemento, era só substituir o valor de n em qualquer das duas primeiras equações.
Bons estudos!
Perfeito fico muito grato. Muito obrigado mesmo, isso nos motiva ainda mais a busca por aprimoramento. Só uma dúvida é formula de PA é dividida por 2 certo, mas não seria 12 em vez de 6?
-
israel jonatas
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 14, 2013 13:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Augusto Evaristo » Sáb Nov 23, 2013 18:54
Olá!
A fórmula da soma dos n termos é:

Verifique que no desenvolvimento da expressão houve a simplificação de 24/2, que resulta em 12, mas há uma segunda simplificação 12/2 que o reduz para 6. Verifique ainda que ocorreram simplificações em todos os elementos da expressão.
Bons estudos!
Matemática não é uma arte
É a linguagem universal
Arte é conhece-la!
-

Augusto Evaristo
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Out 15, 2010 18:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por israel jonatas » Sáb Nov 23, 2013 23:19
Augusto Evaristo escreveu:Olá!
A fórmula da soma dos n termos é:

Verifique que no desenvolvimento da expressão houve a simplificação de 24/2, que resulta em 12, mas há uma segunda simplificação 12/2 que o reduz para 6. Verifique ainda que ocorreram simplificações em todos os elementos da expressão.
Bons estudos!
Entendi, valeu mesmo.
-
israel jonatas
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 14, 2013 13:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Lógica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- tenho dúvidas
por nayane » Sex Set 10, 2010 10:58
- 3 Respostas
- 2399 Exibições
- Última mensagem por Douglasm

Sáb Set 11, 2010 21:05
Geometria Plana
-
- também tenho dúvidas
por nayane » Sex Set 10, 2010 11:04
- 4 Respostas
- 2422 Exibições
- Última mensagem por nayane

Sáb Set 11, 2010 21:42
Trigonometria
-
- Resolver um problema que tenho duvidas
por amanda s » Dom Nov 17, 2013 16:39
- 2 Respostas
- 1789 Exibições
- Última mensagem por amanda s

Dom Nov 17, 2013 20:39
Cálculo: Limites, Derivadas e Integrais
-
- Tenho duvidas de como resolver este exercício!!!!
por Sarah_bernadeth » Sex Mar 28, 2008 18:47
- 1 Respostas
- 2056 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 20:02
Álgebra Elementar
-
- Tenho dúvidas de como resolver este exercício de conjuntos
por Thiago Sousa » Ter Mai 06, 2008 17:11
- 2 Respostas
- 4388 Exibições
- Última mensagem por Thiago Sousa

Ter Mai 06, 2008 19:25
Conjuntos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.