por costav13 » Sáb Nov 09, 2013 10:10
Calcule a derivada das funções dadas utilizando as propriedade

-
costav13
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Out 28, 2013 11:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Sáb Nov 09, 2013 19:15
Derive cada termo separadamente .
Considere

,observe que

. Então ,
![[exp(h(x))]' = exp(h(x)) \cdot h'(x) [exp(h(x))]' = exp(h(x)) \cdot h'(x)](/latexrender/pictures/c8a895f537c49e39b5ec8924e8a4c569.png)
. Esta fórmula será suficiente p/ determinar a derivada dos dois primeiros termos . Basta então determinar a derivada da função

.
Agora como determinar a derivada de

. Onde a é uma constante real positiva e diferente que 1 e

. Considere

. Por mudança de base ,

. Derivando-se

. Agora mudando da base

p/

,obtemos a fórmula

.
Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por costav13 » Sáb Nov 09, 2013 22:33
Não deu pra entender ???
-
costav13
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Out 28, 2013 11:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Dom Nov 10, 2013 13:29
Primeira propriedade , "derivada da soma é a soma das derivadas " :
![f'(x) = [exp\left(\frac{x+1}{x-1}\right)]' + [exp\left(x^3ln(x^2) \right)]' + [log_2(3x^2+7 - 1)] ' f'(x) = [exp\left(\frac{x+1}{x-1}\right)]' + [exp\left(x^3ln(x^2) \right)]' + [log_2(3x^2+7 - 1)] '](/latexrender/pictures/6f2fa554eef3faafdee8c97f46fcccbf.png)
.
Agora tome

e

. Temos :
![f'(x) = [exp\left(g(x) \right)]' + [exp\left(h(x) \right)]' + [log_2(p(x))] ' f'(x) = [exp\left(g(x) \right)]' + [exp\left(h(x) \right)]' + [log_2(p(x))] '](/latexrender/pictures/e654d509d59641e928d78fc3ac3207b6.png)
. No post anterior deduzimos fórmulas,vamos aplicar elas ,

. A resposta final será

.Agora tente determinar as derivadas das funções

.Comente as dúvidas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Não consigo resolver esta questão, por favor me ajudem!
por Derlan » Ter Jul 04, 2017 15:32
- 0 Respostas
- 1952 Exibições
- Última mensagem por Derlan

Ter Jul 04, 2017 15:32
Geometria Analítica
-
- Alguém sabe como resolver????
por DMonteiro » Sáb Abr 03, 2010 23:31
- 4 Respostas
- 3647 Exibições
- Última mensagem por gambit

Ter Fev 17, 2015 00:00
Matemática Financeira
-
- Alguém sabe como resolver???
por DMonteiro » Sáb Abr 03, 2010 23:38
- 4 Respostas
- 3117 Exibições
- Última mensagem por DMonteiro

Dom Abr 04, 2010 21:40
Cálculo: Limites, Derivadas e Integrais
-
- [Equaçoes] alguem que sabe me ajude a resolver.
por teilom » Dom Ago 04, 2013 17:00
- 1 Respostas
- 1483 Exibições
- Última mensagem por DanielFerreira

Dom Ago 04, 2013 20:03
Equações
-
- [Limite] alguem sabe resolver essa expressão?
por tainaraabp » Ter Out 02, 2012 11:35
- 1 Respostas
- 2059 Exibições
- Última mensagem por LuizAquino

Ter Out 02, 2012 12:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.