• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicios básicos

Exercicios básicos

Mensagempor Martinele » Ter Out 29, 2013 22:24

Estou estudando para concursos e, na minha área, a matemática é bem básica. Porém, mesmo assim, não consigo fazer alguns exercícios rsrs.
Preciso que alguém resolva esses para que eu possa estudar baseado na resposta deles.

Janice recortou dois quadrados cujas área de cada um mede 36cm² e os colocou um ao lado do outro, formando um retangulo. A diagonal desse retangulo mede?

Uma caixa de sapatos em formato de paralelepípedo reto-retangulo possui dimensoes de 15cm, 22cm e 4 dm. O volume de uma pilha contendo 350 dessas caixas é igual a?

Obrigado.
Martinele
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Out 29, 2013 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Jornalismo
Andamento: formado

Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}