• Anúncio Global
    Respostas
    Exibições
    Última mensagem

/fATOR COMUM EM EVIDENCIA ME AJUDEM !!!!

/fATOR COMUM EM EVIDENCIA ME AJUDEM !!!!

Mensagempor Reidson » Dom Ago 04, 2013 23:56

Por Favor me ajude

\frac{{ax}^{2}+bx-{ay}^{2}+by}{x+y}
Reidson
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Ago 04, 2013 23:42
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: /fATOR COMUM EM EVIDENCIA ME AJUDEM !!!!

Mensagempor Russman » Seg Ago 05, 2013 07:36

ax^2 + bx - ay² + by = a(x^2 - y^2) + b(x+y) = a(x-y)(x+y) + b(x+y) = (x+y)(a(x-y) + b)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.