por dani741 » Qua Jul 03, 2013 19:53
1. O ponto p(1,0) está sobre a curva

Estime a inclinação da reta tangente em P.
gostaria de ajuda em como resolver essa questão!
obrigada
-
dani741
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Jul 03, 2013 19:19
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qua Jul 03, 2013 21:56
Boa noite .A equação da reta tangente a curva

no ponto

é dada por
E sua inclinação é

.
Considerando

, pela regra da cadeia

.Assim ,

é a inclinação da reta tangente a curva dada .Basta fazer as contas com

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas inclinacao da reta tangente
por Gabrielmelocampos20 » Qui Nov 12, 2015 20:46
- 1 Respostas
- 2357 Exibições
- Última mensagem por Cleyson007

Sex Nov 13, 2015 08:35
Cálculo: Limites, Derivadas e Integrais
-
- Estimar o valor da inclinação da reta tangente
por samra » Sáb Abr 14, 2012 16:36
- 0 Respostas
- 835 Exibições
- Última mensagem por samra

Sáb Abr 14, 2012 16:36
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]- Inclinação da tangente
por Ana_Rodrigues » Qui Fev 23, 2012 15:51
- 4 Respostas
- 3141 Exibições
- Última mensagem por Ana_Rodrigues

Qui Fev 23, 2012 21:10
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8535 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- [Reta Paralela à Reta Tangente]
por raimundoocjr » Qui Mai 30, 2013 18:44
- 0 Respostas
- 1093 Exibições
- Última mensagem por raimundoocjr

Qui Mai 30, 2013 18:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.