• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites, inclinação da reta tangente

Limites, inclinação da reta tangente

Mensagempor dani741 » Qua Jul 03, 2013 19:53

1. O ponto p(1,0) está sobre a curva y= sen( \frac{10\pi}{x} )

Estime a inclinação da reta tangente em P.

gostaria de ajuda em como resolver essa questão!
obrigada
dani741
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jul 03, 2013 19:19
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites, inclinação da reta tangente

Mensagempor e8group » Qua Jul 03, 2013 21:56

Boa noite .A equação da reta tangente a curva y = f(x) no ponto (a,f(a)) é dada por

y - f(a) =  f'(a)(x-a)

E sua inclinação é f'(a) .

Considerando f(x) = sin(10\pi/x) , pela regra da cadeia f'(x) = sin'(10\pi/x) \cdot (10\pi/x)' = -10\pi cos(10\pi/x)/x^2 .Assim ,

f'(a) = -10\pi cos(10\pi/a)/a^2 é a inclinação da reta tangente a curva dada .Basta fazer as contas com a = 1 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}