• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Dúvida sobre provar pela definição

[LIMITE] Dúvida sobre provar pela definição

Mensagempor Icaro1931 » Qui Mai 23, 2013 22:14

Amigos, boa noite

Tenho uma dúvida bem simples (ao meu ver), mas que está me matando rs

Pra provar um limite pela definição é preciso sempre encontrar uma relação entre o Delta e o Epsilon?

Por exemplo, digamos que eu calcule um limite e depois, pela definição, chegue a 0 < lx + 1l < Delta ---> l-x² - 2x - 1l < E, isso vale pra provar que o limite que calculei existe ou preciso demonstrar uma relação mesmo entre Delta e Epsilon?

Se sim, como seria feita nesse caso?

Grato desde já
Icaro1931
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mai 23, 2013 22:10
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Dúvida sobre provar pela definição

Mensagempor e8group » Sex Mai 24, 2013 08:59

Icaro1931 escreveu:Pra provar um limite pela definição é preciso sempre encontrar uma relação entre o Delta e o Epsilon?


Sim ,sempre .

Por exemplo, digamos que eu calcule um limite e depois, pela definição, chegue a 0 < lx + 1l < Delta ---> l-x² - 2x - 1l < E, isso vale pra provar que o limite que calculei existe ou preciso demonstrar uma relação mesmo entre Delta e Epsilon?


Neste caso , fixado \epsilon > 0 ,basta tomarmos \delta \geq  \sqrt{\epsilon}

Dica : Observe que |-x^2-2x-1| = |(-1)(x^2+2x+1)| = |-1||x^2+2x+1| = |(x+1)^2| .
Tente fazer o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.