por teer4 » Ter Mai 21, 2013 12:11
Tenho tido alguma dificuldade em resolver esta questão:
"Use a derivação logarítmica para encontrar a derivada de
![y=\sqrt[3]{\frac{x^2-3}{1+x^5}}.e^x^2 y=\sqrt[3]{\frac{x^2-3}{1+x^5}}.e^x^2](/latexrender/pictures/e0f8c65cfb01c2568a9f13e4e6748255.png)
"
A minha principal dificuldade está na presença da raiz cúbica. Na minha resolução o resultado é y'= y/3.
Agradecia a ajuda.
-
teer4
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Mai 21, 2013 11:47
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: licenciaturabiologia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivação logarítmica.
por matematicouff » Dom Mai 20, 2012 04:08
- 1 Respostas
- 1338 Exibições
- Última mensagem por LuizAquino

Ter Mai 22, 2012 14:59
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por Michelee » Seg Mai 16, 2011 15:24
- 1 Respostas
- 2221 Exibições
- Última mensagem por LuizAquino

Seg Mai 16, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- [Derivação]
por carolinenonato » Ter Abr 03, 2012 16:30
- 3 Respostas
- 3388 Exibições
- Última mensagem por MarceloFantini

Ter Abr 03, 2012 20:32
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por leticiapires52 » Qui Out 22, 2015 11:49
- 1 Respostas
- 1890 Exibições
- Última mensagem por Cleyson007

Qui Out 22, 2015 20:52
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por johnatta » Qui Jun 04, 2015 10:53
- 1 Respostas
- 1550 Exibições
- Última mensagem por nakagumahissao

Seg Out 05, 2015 15:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.