• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sequências: principio de indução

Sequências: principio de indução

Mensagempor Victor Gabriel » Dom Abr 21, 2013 14:37

Usando o princípio da inducão finita, prove que as afirmações abaixa são verdadeira para todo natural n.
a) 1.2+2.3+3.4+...+n.(n+1)=\frac{n(n+1)(n+2)}{3}
resp: para n=1 2=\frac{1(1+1)(1+2)}{3} é verdade
estou mim atrapalhando para n=k+1
tem como mim ajudarem?

b) 1+4+7+...+(3n-2)=\frac{n(3n-1)}{2}
resp: para n=1 1=\frac{1(3.1-1)}{2} é verdade

mais para n=k+1, não sei fazer tem alguém que pode mim ajuda?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: Sequências: principio de indução

Mensagempor young_jedi » Seg Abr 22, 2013 10:59

para k+1

1.2+2.3+3.4+\dots+k(k+1)+(k+1)(k+2)=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2)

=\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}

=\frac{(k+3)(k+2)(k+1)}{3}

=\frac{(k+1)((k+1)+1)((k+1)+2)}{3}

tente fazer para o proxmio e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Sequências: principio de indução

Mensagempor Victor Gabriel » Ter Abr 23, 2013 17:57

Young_jedi olha se eu acertei o item b)
como eu disse é verdadeiro para n=1.
passo intuitivo: se a formula é verdadeira para n=k, então deve se verdadeira para n=k+1.
hip intuitiva: para n=k
1+4+7+...+(3k-2)=\frac{k(3k-1)}{2}
somando (3k+1) nos dois membros terei:
1+4+7+...+(3k-2)+(3k+1)=\frac{k(3k-1)}{2}+(3k+1)
=\frac{k(3k-1)+2(3k+1)}{2}

estou certo ou não?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: Sequências: principio de indução

Mensagempor young_jedi » Ter Abr 23, 2013 20:13

Até ai esta correto

voce tem que deixar na forma

\frac{n(3n-1)}{2}


sendo n=k+1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Sequências: principio de indução

Mensagempor Victor Gabriel » Ter Abr 23, 2013 22:03

young_jedi escreveu:Até ai esta correto

voce tem que deixar na forma

\frac{n(3n-1)}{2}


sendo n=k+1


yung_jedi eu já fiz para n=k+1, que da \frac{k(3k-1)+2(3k+1)}{2} se não for esta a resposta, por favor mim demostre onde estou errando.
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: Sequências: principio de indução

Mensagempor young_jedi » Qua Abr 24, 2013 09:50

partindo da onde voce chegou

\frac{k(3k-1)+2(3k+1)}{2}

\frac{3k^2+5k+2)}{2}

\frac{3k^2+3k-k+3k+3-1)}{2}

\frac{k(3(k+1)-1)+3(k+1)-1)}{2}

\frac{(k+1)(3(k+1)-1)}{2}

agora esta na forma geral, e feita a demonstração
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}