• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor JulioLester » Sáb Set 26, 2009 21:03

Bom estou tendo geometria analitica e estou com alguns problemas para resolver alguns exercicios básico vou passar eles aqui e gostaria de ajuda.

1 determine as coordenadas do vetor
v = 3u - 2w - 3t
sendo
u= i + k
w= j + k
t= -i - j +2k


2- Dados os pontos A(1,2,0) B(-1,0,2) e C(0,1,3) determine as coordenadas de D sabendo que:
v(AB) = V(CD)


3- Dados os pontos B(1,2,0) C(3,1,1) e D(0,2,-1) determine as coordenadas do ponto A sabendo que:
2v(AB) = 3v(CD)

desde ja agradeço
JulioLester
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Set 26, 2009 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Vetores

Mensagempor marciommuniz » Dom Set 27, 2009 01:09

JulioLester escreveu:Bom estou tendo geometria analitica e estou com alguns problemas para resolver alguns exercicios básico vou passar eles aqui e gostaria de ajuda.

1 determine as coordenadas do vetor
v = 3u - 2w - 3t
sendo
u= i + k
w= j + k
t= -i - j +2k


sabe-se que os vetores i, j e k são chamados de vetores da base canonica
de valores:
i = (1, 0 , 0)
j = (0, 1, 0)
k = (0, 0, 1)

logo: u = i+k = (1, 0 ,0) + (0, 0 ,1) = (1, 0 ,1)
w = j+k = (0, 1, 0 ) + (0, 0 , 1) = (0,1,1)
t = -i - j = (-1, 0 ,0) - (0, 1, 0) = (-1,-1,0)

se v = 3u - 2w - 3t
v = 3(1,0,1) - 2(0,1,1) - 3(-1,-1,0) = (6, 1, 1)

JulioLester escreveu:2- Dados os pontos A(1,2,0) B(-1,0,2) e C(0,1,3) determine as coordenadas de D sabendo que:
v(AB) = V(CD)


Determine letras para o vetor D = (x,y,z)..

O vetor AB = B-A = (-1,0,2) - (1,2,0) = (-2,-2,2)
O vetor CD = D-C = (x, y ,z) - (0,1,3) = (x,y-1,z-3)

Igualdade de vetores, basta igualar os termos correspondentes
x = -2
y-1 = -2 => y = -1
z-3 = 2 => z=5
logo, vetor D = (-2,-1,5)


JulioLester escreveu:3- Dados os pontos B(1,2,0) C(3,1,1) e D(0,2,-1) determine as coordenadas do ponto A sabendo que:
2v(AB) = 3v(CD)

desde ja agradeço


Utilize a mesma teoria do exercício anterior. Um abraço!
obs: fiz os calculos correndo, dê uma conferida.
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando

Re: Vetores

Mensagempor JulioLester » Dom Set 27, 2009 01:25

Muito obrigado pela ajuda... já adiantou meu trabalho eu tava travado não sabia o que fazer

obrigado
JulioLester
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Set 26, 2009 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59