• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema de Logaritmo

Sistema de Logaritmo

Mensagempor AnakinGabriel » Sáb Mar 09, 2013 20:15

Então pessoal, encontrei essa questão no meu livro e não consegui resolver, eu 'travo' em certos pontos da resolução e não consigo mais avançar.

Resolva o sistema abaixo:
{log}_{10}x+{log}_{10}y={log}_{10}2
{x}^{2}+{y}^{2}=5

Obrigado.
AnakinGabriel
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mar 09, 2013 19:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico de Informatica
Andamento: cursando

Re: Sistema de Logaritmo

Mensagempor e8group » Sáb Mar 09, 2013 21:46

Equações ,

(i) log(x) +log(y) = log(2)

(ii) x^2 + y^2 = 5

Em (i) por propriedades de logaritmo podemos escrever que log(x) +log(y)= log(x\cdot y) = log(2) ou ainda que x \cdot y = 2 (OK ?)

Em(ii) ,vale destacar que x^2 + y^2 =  x^2 + y^2  + [2xy +(- 2xy)] =  (x+y)^2 -2xy .


Como x\cdot y = 2 substituindo-se em (x+y)^2 -2xy obtemos que (x+y)^2 -2\cdot 2 = 5  \implies (x+y)^2 = 5 + 4 = 9 .Extraindo a raiz quadrada em ambos membros \sqrt{(x+y)^2} = \sqrt{9} = 3 . Visto que a equação (i) estar definida se , e somente se , x,y são ambos positivos ,então ficamos apenas com x+y = 3 \implies x = 3-y .

Substituindo-se x na equação (i) ou (ii) ,

(3-y)^2 + y^2 = 5

Basta resolver a equação acima em y > 0 ,logo após substitua a solução p/ y em x = 3-y e encontre x .

Tente concluir .

OBS.:

a) [2xy +(- 2xy)] = 0 não estamos alterando o resultado (elemento neutro adtivo )

b) x^2 + y^2 =  x^2 + y^2  + [2xy +(- 2xy)] por associatividade temos que x^2 + y^2  + [2xy +(- 2xy)] =  (x^2 + y^2 +2xy) -2xy e ainda observando que x^2 + y^2 +2xy = (x+y)^2 (OK?) , obtemos (x+y)^2 -2xy .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?