por doug_arantes » Seg Mar 04, 2013 23:42
Pessoal, sou novo no fórum.
Tenho a seguinte dúvida, referente a disciplina de Probabilidade e Estatística.
Estou estudando Distribuição Normal Padrão.
Sei como resolver questões como as seguintes: P(Z < 1,85) = 0,9876; P(1,34 < Z < 2,3 )= 0,0794.
Mas fiquei em dúvida quando a questão é como a seguinte P(Z = 1,5) a resposta é 0 (Zero).
Gostaria de saber se sempre que a questão for do tipo que Z = ? (Z for igual a algum valor) o resultado sempre vai ser 0 (Zero) ?
Agradeço desde já!
-
doug_arantes
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mar 04, 2013 23:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Distribuição Normal Padrão
por tatieures » Dom Abr 10, 2011 17:16
- 4 Respostas
- 2921 Exibições
- Última mensagem por tatieures

Dom Abr 10, 2011 21:26
Estatística
-
- [Distribuição normal] com normal reduzida e tabela, dúvida
por MarciaChiquete » Sáb Set 17, 2016 20:38
- 0 Respostas
- 8270 Exibições
- Última mensagem por MarciaChiquete

Sáb Set 17, 2016 20:38
Estatística
-
- Estatística Probabilidade - Normal Padrão
por veldri » Seg Abr 26, 2010 23:46
- 4 Respostas
- 4168 Exibições
- Última mensagem por veldri

Qua Abr 28, 2010 00:00
Estatística
-
- Distribuição normal
por lanahwinchester » Qui Jun 30, 2011 13:58
- 2 Respostas
- 5750 Exibições
- Última mensagem por sena

Sáb Jul 30, 2011 12:41
Estatística
-
- Distribuição Normal
por paivadaniel » Qui Jul 14, 2011 17:23
- 0 Respostas
- 4369 Exibições
- Última mensagem por paivadaniel

Qui Jul 14, 2011 17:23
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.