• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL] Soma de Riemann

[INTEGRAL] Soma de Riemann

Mensagempor Aryane » Dom Jan 06, 2013 12:10

Olá!

Preciso resolver alguns exercícios e eu não conheço o método que eu tenho que usar.

Das equação abaixo, tenho que desenhar uma figura mostrando a região e um elemento de área retangular,
expressar a área da região como o limite de uma soma de Riemann
e achar o limite na parte (b), calculando uma integral definida pelo segundo teorema fundamental do cálculo.

1) y=4-x²; eixo x
2) y=2-x²; y=-x
3) y²=x-1; x=3

Alguém por favor pode me ajudar?
Aryane
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jan 06, 2013 11:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.