por angeloka » Qui Out 21, 2010 21:17
1. Descreva todas as passagens necessárias para se obter uma fórmula fechada* para cada uma das somas abaixo:
a) 2+4+6+8...+2n.
b) 2+5+8+...+(3n-1).
2. Construa, usando o Princípio da Indução:
a) Encontre uma fórmula para a soma dos primeiros números naturais.
b) Encontre a soma dos quadrados dos primeiros números naturais.
c) Encontre a soma dos primeiros números ímpares.
preciso de ajuda por favor
-
angeloka
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Ter Out 05, 2010 18:20
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: pós em matemática
- Andamento: cursando
por MarceloFantini » Qui Out 21, 2010 23:54
Você sabe o que é Princípio da Indução finita? Você consegue identificar, mesmo sendo responder a questão, quais são as fórmulas da questão 1? Se souber, consegue fazer. Você está na pós-graduação mesmo?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cah » Sáb Out 23, 2010 20:57
Olá preciso muito da ajuda de vcs, gostaria de saber onde estou errando nesse exercício.
Mandei em anexo a resolução.
Obrigada
- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
Cah
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 23, 2010 20:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por DanielRJ » Sáb Out 23, 2010 21:14
ola amiga crie um novo topico e preferencialmente salve em Imagem para nao haver necessidade de baixa-lo outro detalhe q o exercicio pode ser escrito.
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Jesus » Sáb Out 23, 2010 21:45
Isso deve ajudar
- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
Jesus
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Out 23, 2010 21:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Artes
- Andamento: cursando
por Jesus » Sáb Out 23, 2010 21:47
Isso com certeza vai ajudar
- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
Jesus
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Out 23, 2010 21:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Artes
- Andamento: cursando
por Cah » Sáb Out 23, 2010 22:09
Obrigada, ajudou bastante.
-
Cah
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 23, 2010 20:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Cah » Dom Out 24, 2010 16:09
Olá pessoal eu fiz novamente dois exercícios o item c eu consegui, agora no item b me enrolei no final, por favor me explique onde estou errando.
Obrigada
- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
Cah
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 23, 2010 20:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por girl » Dom Out 24, 2010 19:36
o seu erro acredito que esteja no
S(n+1) quer dizer que é o valor de n que a formula +1 e não n +1
Sn= [n.(n+1).(2n+1)]/6
a provar seria Sn+1= {(n+1)(n+2).[(2n+2)+1]}/6
acredito que estejamos fazendo o mesmo curso qualquer duvida é perguntar quem sabe uma não ajuda a outra
-
girl
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Out 24, 2010 10:55
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por Cah » Seg Nov 01, 2010 10:05
Olá pessoal estou com algumas dificuldades na resolução de problema. Alguém poderia me ajudar?
O enunciado é o seguinte:Considere dois quadrados, um de lado a cm e o outro de lado b cm. Sabendo-se
que a área do quadrado de lado a é igual à área do quadrado de ladob , mais 2100
cm2, determine todos os possíveis valores de a e b.
Dica: Faça um desenho para cada quadrado, visualize através da relação entre as áreas que
lhe foi dada, qual quadrado é maior e qual é menor. A partir daí, faça a seguinte análise:
Qual a menor e a maior medida que um lado de cada quadrado pode assumir de modo que a
relação entre as suas áreas sejam satisfeitas?
-
Cah
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 23, 2010 20:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Cah » Seg Nov 01, 2010 15:34
Olá pessoal eu já fiz uma atividade e falta finaliza-la, mas eu não estou conseguindo, por favor preciso da ajuda de vcs.
Abraços
(ii) Qual o tamanho original da vitória régia no momento em que ela foi introduzida no tanque de água? Justifique o seu raciocínio para chegar à resposta, se preferir, ilustre a situação do problema de modo que, por exemplo, um aluno pudesse visualizar o que esta acontecendo.
Sabendo-se que ela dobra a cada dia , ou seja, (2,4,8,16,32,...), então é uma P.G. de razão q = 4/2 =2
Vamos que a sequência é 2¹, 2², 2³,... é uma P.G. de razaão q = 2 e e A1 = 2.
Em 20 dias, portanto, sua área é 2^20 ou cerca AT = 524288. Para resolver esse problema, poderíamos ter recorrido à fórmula do termo geral de uma P.G.:
an= a1 . q n – 1 = a^20 = 2 . 2^20 -1 = a^20 = 220
Agora, como queremos saber a área inicial, através da P.G , por favor me ajudem
-
Cah
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Out 23, 2010 20:41
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por roseli » Ter Nov 02, 2010 10:56
Olá Cah! Percebi que fazemos o mesmo curso e estou mais perdida do que cego em tiroteio. Pode me ajudar? Meu e-mail é:
roselinovello@yahoo.com.brSó para completar meu pedido, gostaria de salientar que não quero ficar na cola, preciso de ajuda mesmo.
-
roseli
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Seg Nov 01, 2010 22:31
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por francisca » Seg Nov 22, 2010 10:29
poderia me ajudar nesta inequação x²-x-2/x-x2<ou igual 0
-
francisca
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Out 09, 2010 21:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Conjuntos, Relações, Equações e Função Quadrática
por angeloka » Ter Nov 02, 2010 15:32
- 2 Respostas
- 1786 Exibições
- Última mensagem por angeloka

Ter Nov 02, 2010 18:31
Álgebra Elementar
-
- Conjunto, Relações, Equações e Função Quadratica
por Carlos » Dom Out 24, 2010 10:56
- 9 Respostas
- 6598 Exibições
- Última mensagem por cris lemes

Ter Out 26, 2010 14:12
Progressões
-
- Disciplina 2 – Conjuntos, Relações, Equações e Função Quadrá
por REGIS » Ter Nov 01, 2011 21:49
- 2 Respostas
- 2501 Exibições
- Última mensagem por deboralino

Sex Nov 04, 2011 11:55
Álgebra Elementar
-
- [Função quadrática] Representação de conjuntos, socorro D:
por Cosma » Qui Abr 18, 2013 14:20
- 0 Respostas
- 1006 Exibições
- Última mensagem por Cosma

Qui Abr 18, 2013 14:20
Funções
-
- conjuntos relações
por Renatinha » Qui Nov 11, 2010 19:18
- 4 Respostas
- 2731 Exibições
- Última mensagem por ricardoorpinelli

Sáb Nov 20, 2010 21:08
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.