• Anúncio Global
    Respostas
    Exibições
    Última mensagem

pg

pg

Mensagempor jose henrique » Sáb Out 09, 2010 15:40

O valor de \sqrt[]{x\sqrt[]{x\sqrt[]{x\sqrt[]{x.....}}}} é?

a questão diz que posso resolver com a equação limite da soma de um pg, mas eu não consegui nem armar.

a1= x
q=\sqrt[]{x}

S= \frac{x}{1-\sqrt[]{x}}

\frac{x}{1-\sqrt[]{x}} . \frac{1+\sqrt[]{x}}{1+\sqrt[]{x}} =\frac{x+x\sqrt[]{x}}{1-x}






}{}}{}
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: pg

Mensagempor Douglasm » Sáb Out 09, 2010 17:38

Reescrevendo esse produto, notamos que ele é igual a:

x^{\frac{1}{2}}\; . \; x^{\frac{1}{4}} \; . \; x^{\frac{1}{8}}\; . \; (...)

Ao multiplicarmos todos esses fatores, devemos somar os expoentes, que se encontram em progressão geométrica. A soma se dá por:

S = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1

O produto é portanto igual a x.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.