por irado » Qui Out 07, 2010 22:38
Olá,
Tenho algumas dúvidas que espero que possam me ajudar. Estou querendo encontrar a matriz hessiana de um ponto (x, y, z) para isso estou utilizando o método de diferenças gaussianas (Difference of Gaussian), no entanto encontrei somente as fórmulas para encontrar os valores da derivada de Dxx, Dyy, Dyx e Dxy.
Dxx = D(x +1, y,? )? 2D(x, y,? )+ D(x ?1, y,? )
Dyy = D(x, y +1,? )? 2D(x, y,? )+ D(x, y ?1,? )
Dxy = Dyx = ( D(x ?1, y +1,? )? D(x +1, y +1,? ) ) + ( D(x +1, y ?1,? )? D(x ?1, y ?1,? ) ) /4
A matriz Hessiana tem a forma:
Dxx Dyx Dzx
Dxy Dyy Dzy
Dxz Dyz Dzz
Quais seriam as fórmulas para formar a matriz hessiana, sendo as formulas para 3 váriaveis?
Outra questão, a diferença gaussiana equivale ao laplaciano de gauss? Pergunto isso porque estou aplicando a função gaussiana computacionalmente através de uma máscara e através delas ainda não sei como definir a escala (?) que quero aplicar no ponto, a máscara já "tem" uma escala. E se utilizar a função gaussiana diretamente, eu posso definir o valor da escala substituindo diretamente na formula.
-
irado
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Out 07, 2010 21:18
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Laplaciano] Calcule o laplaciano da função dada:
por Eletrica07 » Ter Mar 29, 2016 15:48
- 1 Respostas
- 1312 Exibições
- Última mensagem por adauto martins

Qua Mar 30, 2016 13:31
Cálculo: Limites, Derivadas e Integrais
-
- Metodo de Gauss Jordan em Matriz 4x4 (Dificil)
por Rhyu » Sex Abr 06, 2012 17:26
- 1 Respostas
- 18387 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 21:31
Matrizes e Determinantes
-
- Teorema do Laplaciano?
por Jhenrique » Qui Fev 13, 2014 10:28
- 0 Respostas
- 685 Exibições
- Última mensagem por Jhenrique

Qui Fev 13, 2014 10:28
Geometria Analítica
-
- Gauss
por admin » Sáb Jul 21, 2007 01:19
- 3 Respostas
- 4641 Exibições
- Última mensagem por jose reis pimenta

Dom Nov 11, 2007 20:42
Desafios Médios
-
- Gauss
por apotema2010 » Seg Mar 01, 2010 09:58
- 1 Respostas
- 1756 Exibições
- Última mensagem por Douglasm

Sex Mar 05, 2010 19:21
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.