• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor gustavosfp » Ter Set 28, 2010 11:15

ola estou com um problema
nao consigo resolver essa integral de jeito nem um
f(x)=\int x\frac{tgx}{1}dx

se puderem me ajudar fico grato
gustavosfp
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Set 28, 2010 10:57
Formação Escolar: GRADUAÇÃO
Área/Curso: eng civil
Andamento: cursando

Re: integral

Mensagempor MarceloFantini » Ter Set 28, 2010 13:12

É essa a integral?

\int x \cdot tgx \; dx
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: integral

Mensagempor Rogerio Murcila » Ter Set 28, 2010 14:04

Veja se isto lhe ajuda:
Anexos
Integral 5.gif
Forma expandida para x=0
Integral 5.gif (3.28 KiB) Exibido 1811 vezes
Integral 4.gif
Forma expandida
Integral 4.gif (2.4 KiB) Exibido 1811 vezes
Integral 3.gif
Outras formas
Integral 3.gif (2.6 KiB) Exibido 1811 vezes
Integral 2.gif
Outras formas
Integral 2.gif (2.54 KiB) Exibido 1811 vezes
Integral.gif
Integral.gif (3.18 KiB) Exibido 1811 vezes
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: integral

Mensagempor gustavosfp » Qua Set 29, 2010 14:58

gustavosfp escreveu:ola estou com um problema
nao consigo resolver essa integral de jeito nem um
f(x)=\int x\frac{tgx}{1}dx
ou
f(x)=\int x.arctanx.dx
se puderem me ajudar fico grato
gustavosfp
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Set 28, 2010 10:57
Formação Escolar: GRADUAÇÃO
Área/Curso: eng civil
Andamento: cursando

Re: integral

Mensagempor MarceloFantini » Qua Set 29, 2010 20:33

Fazendo u = tg^{-1} x e dv = x \; dx, temos:

du = \frac{1}{x^2 +1} \; dx

v = \frac{x^2}{2}

Logo:

\int (x \cdot tg^{-1}) \; dx = (tg^{-1} x) \cdot \left( \frac{x^2}{2} \right) - \frac{1}{2} \cdot \int \left( \frac{x^2}{x^2 +1} \right) \; dx

Calculando a segunda:

\int \left( \frac{x^2}{x^2 +1} \right) \; dx = \int \left( 1 - \frac{1}{x^2 +1} \right) \; dx = \int dx - \int \frac{1}{x^2 +1} \; dx = x - tg^{-1} x + C_1

Portanto:

\int (x \cdot tg^{-1}) \; dx = \frac{x^2 \cdot tg^{-1} x}{2} - x + tg^{-1}x + C
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59