• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação do 2ºgrau

equação do 2ºgrau

Mensagempor jose henrique » Seg Set 13, 2010 09:26

Se x é positivo e se o inverso de x+1 é x-1 determine o valor de x


como faço para encontrar o valor dessa equação?
Seria isso
\frac{x+1}{x-1}


e depois disso como faço?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: equação do 2ºgrau

Mensagempor Elcioschin » Seg Set 13, 2010 11:07

O que você escreveu NÃO é uma equação ----> Uma equação precisa ter dois membros separados por um sinal =

Assim, você não interpretou corretamente o enunciado:

O inverso de x + 1 ------> 1/(x + 1)
é igual ----> =
x - 1

1/(x + 1) = x - 1 ----> 1 = (x + 1)*(x - 1) -----> 1 = x² - 2x + 1 ----> x² - 2x = 0 ----> x*(x - 2) = 0

Temos duas soluções:

1) x = 0 ----> não serve pois x é positivo

2) x - 2 = 0 ----> x = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: equação do 2ºgrau

Mensagempor jose henrique » Seg Set 13, 2010 19:21

então o gabarito do meu está errado, pois deu \sqrt[]{2}
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: equação do 2ºgrau

Mensagempor Douglasm » Seg Set 13, 2010 19:52

Seu gabarito está correto José Henrique. Elcioschin faltou com atenção a um detalhe:

1 = (x+1).(x-1) \;\therefore

1 = x^2 - 1 \;\therefore

x^2 = 2 \;\therefore

x = \sqrt{2} \;\mbox{ou}\; -\sqrt{2}

Como ele diz que x é positivo, ficamos somente com a raiz positiva.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: equação do 2ºgrau

Mensagempor jose henrique » Sáb Set 18, 2010 22:25

só não entendi de onde surgiu o 2
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: equação do 2ºgrau

Mensagempor Douglasm » Dom Set 19, 2010 09:44

1 = x^2 - 1 \;\therefore

1 + 1 = x^2 - 1 + 1 \;\therefore

2 = x^2
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.