• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação do 2ºgrau

equação do 2ºgrau

Mensagempor jose henrique » Seg Set 13, 2010 09:26

Se x é positivo e se o inverso de x+1 é x-1 determine o valor de x


como faço para encontrar o valor dessa equação?
Seria isso
\frac{x+1}{x-1}


e depois disso como faço?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: equação do 2ºgrau

Mensagempor Elcioschin » Seg Set 13, 2010 11:07

O que você escreveu NÃO é uma equação ----> Uma equação precisa ter dois membros separados por um sinal =

Assim, você não interpretou corretamente o enunciado:

O inverso de x + 1 ------> 1/(x + 1)
é igual ----> =
x - 1

1/(x + 1) = x - 1 ----> 1 = (x + 1)*(x - 1) -----> 1 = x² - 2x + 1 ----> x² - 2x = 0 ----> x*(x - 2) = 0

Temos duas soluções:

1) x = 0 ----> não serve pois x é positivo

2) x - 2 = 0 ----> x = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: equação do 2ºgrau

Mensagempor jose henrique » Seg Set 13, 2010 19:21

então o gabarito do meu está errado, pois deu \sqrt[]{2}
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: equação do 2ºgrau

Mensagempor Douglasm » Seg Set 13, 2010 19:52

Seu gabarito está correto José Henrique. Elcioschin faltou com atenção a um detalhe:

1 = (x+1).(x-1) \;\therefore

1 = x^2 - 1 \;\therefore

x^2 = 2 \;\therefore

x = \sqrt{2} \;\mbox{ou}\; -\sqrt{2}

Como ele diz que x é positivo, ficamos somente com a raiz positiva.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: equação do 2ºgrau

Mensagempor jose henrique » Sáb Set 18, 2010 22:25

só não entendi de onde surgiu o 2
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: equação do 2ºgrau

Mensagempor Douglasm » Dom Set 19, 2010 09:44

1 = x^2 - 1 \;\therefore

1 + 1 = x^2 - 1 + 1 \;\therefore

2 = x^2
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}