• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questoes de concurso

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

questoes de concurso

Mensagempor karla_paula » Dom Jun 13, 2010 15:06

41. Sejam:
\frac{1^2}{1}+ \frac{2^2}{3}+\frac{3^2}{5}+....\frac{1001^2}{2001}  e   b= \frac{1^2}{3}+\frac{2^2}{5}+\frac{3^2}{7}....\frac{1001^2}{2003}

Qual é o inteiro mais próximo de a – b?
(A) 1001.
(B) 500.
(C) 999.
(D) 1000.
(E) 501
karla_paula
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 12, 2010 08:09
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: questoes de concurso

Mensagempor Vininhuu » Seg Jul 12, 2010 15:51

O a = \dfrac{1^2}{1} + \dfrac{2^2}{3} + \dfrac{3^2}{5} + \dfrac{4^2}{7} + \ldots \dfrac{1001^2}{2001}?

É que ali não consta o valor de a, só mostra o "\dfrac{1^2}{1} + \dfrac{2^2}{3} + \dfrac{3^2}{5} + \dfrac{4^2}{7} + \ldots \dfrac{1001^2}{2001}" e o valor de b.
Vininhuu
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Jun 10, 2010 17:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: questoes de concurso

Mensagempor MarceloFantini » Ter Jul 13, 2010 16:26

Quando tivermos 3 parcelas: (\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5}) - (\frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7}) = 1 + \frac{4-1}{3} + \frac{9-4}{5} - \frac{3^2}{7} = 3 - \frac{3^2}{7}.

Quando tivermos 10 parcelas: (\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} + \frac{4^2}{7} + \frac{5^2}{9} + \frac{6^2}{11} + \frac{7^2}{13} + \frac{8^2}{15} + \frac{9^2}{17} + \frac{10^2}{19}) - (\frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} + \frac{4^2}{9} + \frac{5^2}{11} + \frac{6^2}{13} + \frac{7^2}{15} + \frac{8^2}{17} + \frac{9^2}{19} + \frac{10^2}{21})

= 1 + \frac{4-1}{3} + \frac{9-4}{5} + \frac{16-9}{7} + \frac{25-16}{9} + \frac{36-25}{11} + \frac{49-36}{13} + \frac{64-49}{15} + \frac{81-64}{17} + \frac{100-81}{19} - \frac{10^2}{21}

= 10 - \frac{10^2}{21}

Assim, quando tivermos n parcelas: (\frac{1^2}{1} + \frac{2^2}{3} + ... + \frac{n^2}{2n-1}) - (\frac{1^2}{3} + \frac{2^2}{5} + ... + \frac{n^2}{2n+1}) = n - \frac{n^2}{2n+ 1}

No caso, 2n+1 = 2003 \Rightarrow n = 1001, logo o número inteiro mais próximo é 1001, alternativa A.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: questoes de concurso

Mensagempor Molina » Ter Jul 13, 2010 16:55

Boa tarde, Karla.

Problema interessante. Se depois puder nos dizer de qual concurso foi, ficaria grato.

Vou reescrever os dados que você passou:

a= \frac{1^2}{1}+ \frac{2^2}{3}+\frac{3^2}{5}+....+\frac{1001^2}{2001}

b= \frac{1^2}{3}+\frac{2^2}{5}+\frac{3^2}{7}+....+\frac{1001^2}{2003}

Só que agora vou colocar todas as frações de a e b com o mesmo denominador uma embaixo da outra, para facilitar na visualização da subtração:

a= \frac{1^2}{1}+ \frac{2^2}{3}+\frac{3^2}{5}+\frac{4^2}{7}+....+\frac{1001^2}{2001}

b= \frac{0^2}{1}+ \frac{1^2}{3}+\frac{2^2}{5}+\frac{3^2}{7}+....+\frac{1000^2}{2001}+\frac{1001^2}{2003}

Note que eu não fiz nenhuma alteração, apenas adicionei um termo nulo em b para ficar alinhado os denominadores. Subtraindo a-b, termo a termo com o mesmo denominador você irá obter:

a-b=1+\frac{3}{3}+\frac{5}{5}+\frac{7}{7}+\frac{9}{9}+...+\frac{2001}{2001}-\frac{1001^2}{2003}

a-b=1+1+1+1+...+1-\frac{1001^2}{2003}

a-b=1001-\frac{1001^2}{2003} \approx 500,749875 \approx 501

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: questoes de concurso

Mensagempor MarceloFantini » Ter Jul 13, 2010 16:57

Quero pedir desculpas. Errei na hora do resultado final, aqui está o certo: n = 1001 \Rightarrow 1001 - \frac{1001^2}{2003} = 1001 - 500.2501 = 500.7499 , ou seja, o número inteiro mais próximo é 501, letra E.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D