por Carolziiinhaaah » Sáb Jun 19, 2010 01:16
Determine o valor real de

para que a equação

tenha raíz dupla.
gabarito: ![\alpha = \frac{3\sqrt[3]{2}}{8} \alpha = \frac{3\sqrt[3]{2}}{8}](/latexrender/pictures/0cbd1add9a60eb2e10c751ef05a8951d.png)
-

Carolziiinhaaah
- Usuário Parceiro

-
- Mensagens: 77
- Registrado em: Sex Mai 28, 2010 14:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Douglasm » Dom Jun 20, 2010 09:39
Para resolver esta eu tive que derivar a equação, caso haja dúvida em relação a isso, é interessante dar uma olhada nessa matéria.
Sabemos que se
P(x) possui uma raiz com multiplicidade
n,
P'(x) possui a mesma raiz com multiplicidade
n-1. Deste modo, a derivada dessa equação terá a raiz dupla com multiplicidade 1:



Como as outras raízes são complexas, o polinômio original tem um termo "
x" e alfa é real, elas não nos interessam. Agora é só substituir essa raiz:




![\alpha = \frac{3\sqrt[3]{2}}{8} \alpha = \frac{3\sqrt[3]{2}}{8}](/latexrender/pictures/0cbd1add9a60eb2e10c751ef05a8951d.png)
E está ai a resposta. Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- expressão algébrica- potência e raiz
por viniseni567 » Qua Jan 01, 2020 17:16
- 1 Respostas
- 2933 Exibições
- Última mensagem por adauto martins

Sex Jan 03, 2020 17:20
Álgebra Elementar
-
- (POLIEDRO) Raíz dupla
por Carolziiinhaaah » Sex Fev 04, 2011 15:41
- 2 Respostas
- 1539 Exibições
- Última mensagem por Carolziiinhaaah

Sex Fev 04, 2011 23:09
Álgebra Elementar
-
- Equação Algébrica
por Carolziiinhaaah » Qui Jun 03, 2010 17:30
- 2 Respostas
- 2196 Exibições
- Última mensagem por Carolziiinhaaah

Seg Jun 14, 2010 14:05
Álgebra Elementar
-
- [raiz da equação] qual a raiz da equação
por lais1906 » Qui Out 11, 2012 14:47
- 3 Respostas
- 1880 Exibições
- Última mensagem por lais1906

Sáb Out 13, 2012 00:17
Equações
-
- Equação Algébrica (c/ relações de Girard)
por Carolziiinhaaah » Sáb Jun 19, 2010 01:11
- 3 Respostas
- 1993 Exibições
- Última mensagem por Douglasm

Seg Jun 21, 2010 22:31
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.