• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Algébrica de raiz dupla

Equação Algébrica de raiz dupla

Mensagempor Carolziiinhaaah » Sáb Jun 19, 2010 01:16

Determine o valor real de a para que a equação x^4 + x + a = 0 tenha raíz dupla.

gabarito:
\alpha = \frac{3\sqrt[3]{2}}{8}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Algébrica de raiz dupla

Mensagempor Douglasm » Dom Jun 20, 2010 09:39

Para resolver esta eu tive que derivar a equação, caso haja dúvida em relação a isso, é interessante dar uma olhada nessa matéria.

Sabemos que se P(x) possui uma raiz com multiplicidade n, P'(x) possui a mesma raiz com multiplicidade n-1. Deste modo, a derivada dessa equação terá a raiz dupla com multiplicidade 1:

P(x) = x^4 + x + \alpha = 0 \; \therefore

P'(x) = 4x^3 + 1 = 0 \; \therefore

x = \frac{-1}{2^{\frac{2}{3}}}

Como as outras raízes são complexas, o polinômio original tem um termo "x" e alfa é real, elas não nos interessam. Agora é só substituir essa raiz:

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{-1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{4 - 1}{2^{\frac{8}{3}}} = \frac{3}{2^{\frac{8}{3}}} = \alpha \; \therefore

\frac{3}{2^{\frac{8}{3}}} \; . \; \frac{2^{\frac{16}{3}}}{2^{\frac{16}{3}}} = \alpha \; \therefore

\alpha = \frac{3\sqrt[3]{2}}{8}

E está ai a resposta. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)