• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parte real e imaginaria do n° complexo z e calculo

Parte real e imaginaria do n° complexo z e calculo

Mensagempor Lee » Sáb Jun 19, 2010 23:05

Alguém pode me ajudar, já tentei fazer mas não consigo terminar e não sei se está certo...
a equação é:
z= ( 2 - i) . (5 + i) - (11 + 3i)
Fiz vários calculos mas somente um, teve resultado completo e queria saber se está certo, a resolução foi:
10 - 2i + 5i + i - 11 + i=
-2i + 3i + i + 3i - 11 + 10=
2i + 3i - 1=
5i - 1. (5i parte imaginaria e 1 parte real).

a outra não teve numero real, não sei se resolve 1° a adição ou a multiplicação e também queria saber se está certo, a equação é:
z= (1 + i) . (2 + i) + (1 - i) . (1 - 2i) =
(2 + i + 2i + i²) + (1 - 2i - i - 2i)=
2i + 4i + i² + 1i - i - 2i=
6i² + i = 37i. (37 i parte imaginaria).

e tenho um outro calculo que a prof° me deu uma ajuda mas também não sei se está certo, a equação é:
se z= 2 + 3i, calcule z².
a minha resolução foi : (2 + 3i) (2 + 3i) =
4 + 6i . 6i + 9i =
10i . 15i = 150i.

outra resposta que eu achei para esse mesmo calculo foi:
4 + 6i . 6i + 9i=
6i . 6i + 9i = -4 =
36i + 9i =
45i.

Se alguém puder me ajudar,desde já muito obrigada...
Lee
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 19, 2010 22:24
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Parte real e imaginaria do n° complexo z e calculo

Mensagempor Anniinha » Seg Nov 01, 2010 20:58

vc faz a multiplicação normal..

z = ( 2 - i) . (5 + i) - (11 + 3i)
z = 10 + 2i - 5i - i² - 11 - 3i
z = 10 + 3i - (-1) -11 -3i
z = 10 + 1 -11
z = 0

z= (1 + i) . (2 + i) + (1 - i) . (1 - 2i) =
z= 2 + i + 2i (+ i² + 1) - 2i -i + 2i²=
z= 2 + 3i + 0 -i -2
z= 2i
(iss sig que passa só pelo eixo y ou imaginario.)

se z= 2 + 3i, calcule z².
z= (2 + 3i) (2 + 3i)
z= 4 + 5i + 6i + 9i²
z= 4 + 11i -9
z= -5 + 11i
Avatar do usuário
Anniinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Out 31, 2010 01:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Geofísica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D