• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Algébrica de raiz dupla

Equação Algébrica de raiz dupla

Mensagempor Carolziiinhaaah » Sáb Jun 19, 2010 01:16

Determine o valor real de a para que a equação x^4 + x + a = 0 tenha raíz dupla.

gabarito:
\alpha = \frac{3\sqrt[3]{2}}{8}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Algébrica de raiz dupla

Mensagempor Douglasm » Dom Jun 20, 2010 09:39

Para resolver esta eu tive que derivar a equação, caso haja dúvida em relação a isso, é interessante dar uma olhada nessa matéria.

Sabemos que se P(x) possui uma raiz com multiplicidade n, P'(x) possui a mesma raiz com multiplicidade n-1. Deste modo, a derivada dessa equação terá a raiz dupla com multiplicidade 1:

P(x) = x^4 + x + \alpha = 0 \; \therefore

P'(x) = 4x^3 + 1 = 0 \; \therefore

x = \frac{-1}{2^{\frac{2}{3}}}

Como as outras raízes são complexas, o polinômio original tem um termo "x" e alfa é real, elas não nos interessam. Agora é só substituir essa raiz:

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{-1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{1}{2^{\frac{2}{3}}} - \left(\frac{1}{2^{\frac{2}{3}}}\right)^4 = \alpha \; \therefore

\frac{4 - 1}{2^{\frac{8}{3}}} = \frac{3}{2^{\frac{8}{3}}} = \alpha \; \therefore

\frac{3}{2^{\frac{8}{3}}} \; . \; \frac{2^{\frac{16}{3}}}{2^{\frac{16}{3}}} = \alpha \; \therefore

\alpha = \frac{3\sqrt[3]{2}}{8}

E está ai a resposta. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: