por GamerVSL » Ter Fev 27, 2018 13:16
Bom dia,
estou com dificuldade em montar um fórmula. Eu possuo 2 pontos (x0, y0) e (x1, y1) e um ângulo (xº), a partir dessas informações preciso calcular um terceiro ponto que esteja a x graus dos 2 anteriores. É possível fazer isso? Agradeço a atenção.
-
GamerVSL
- Novo Usuário
-
- Mensagens: 1
- Registrado em: Ter Fev 27, 2018 13:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de sistemas
- Andamento: formado
por DarioCViveiros » Qui Mar 01, 2018 23:10
Boa noite, espero que veja essa mensagem apesar da espera.
Se existem dois pontos
e
e esses formarem uma reta, é possível calcular o coeficiente angular
através de um determinante, basta fazer:
ao calcular o determinante com tais valores, conseguirá a equação da reta geral, ou seja, na forma ax + by = c
Em seguida, isola-se o y:
m é chamado de coeficiente angular e, equivale à tangente do ângulo entre a reta e o eixo das abscissas (x). Enquanto que n o coeficiente angular e corresponde à "altura" do ponto em que a reta cruza o eixo das ordenadas (y).
Logo, basta verificar a qual ângulo equivale a tangente encontrada, o que pode ser feito através de uma tabela ou da função inversa
a qual retornará um valor em radiano, logo, nesse caso, é necessário fazer a conversão para graus, caso seja necessário, caso contrário, verificar em uma tabela deve servir.
Espero ter ajudado.
-
DarioCViveiros
- Novo Usuário
-
- Mensagens: 7
- Registrado em: Qua Fev 21, 2018 16:33
- Localização: PI
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Estudo do ponto - Geometria Analítica!
por Iza » Qua Set 10, 2008 18:16
- 3 Respostas
- 4587 Exibições
- Última mensagem por admin
Qui Set 11, 2008 15:48
Geometria Analítica
-
- geometria analitica ponto equidistante
por jeffersonricardo » Seg Ago 16, 2010 17:18
- 1 Respostas
- 2601 Exibições
- Última mensagem por MarceloFantini
Seg Set 06, 2010 13:10
Geometria Plana
-
- geometria analitica ponto equidistante
por jeffersonricardo » Seg Ago 16, 2010 17:18
- 1 Respostas
- 13998 Exibições
- Última mensagem por Douglasm
Seg Ago 16, 2010 17:44
Geometria Plana
-
- geometria analitica ponto equidistante
por jeffersonricardo » Ter Ago 17, 2010 15:04
- 1 Respostas
- 8150 Exibições
- Última mensagem por Douglasm
Ter Ago 17, 2010 15:33
Geometria Analítica
-
- [Geometria Analítica] Projeção do ponto no plano
por -civil- » Qui Ago 11, 2011 09:51
- 1 Respostas
- 2811 Exibições
- Última mensagem por LuizAquino
Sex Ago 12, 2011 13:14
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {
} e B = {
}, então o número de elementos A
B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {
} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {
} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.