por Rayane01 » Qua Dez 21, 2016 19:12
Considerando que

qual o valor de x e de y na equação:
Já vi algumas questões parecidas mas nenhuma explica detalhadamente a resolução. Se puderem colocar o passo a passo seria de grande ajuda. Desde já, agradeço.
-
Rayane01
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Dez 21, 2016 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por petras » Qui Dez 22, 2016 22:44
-
petras
- Usuário Parceiro

-
- Mensagens: 58
- Registrado em: Sex Jan 22, 2016 21:19
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação com expoente-incógnita.
por RodriguesBruno » Ter Mai 20, 2014 18:54
- 2 Respostas
- 2332 Exibições
- Última mensagem por RodriguesBruno

Qua Mai 21, 2014 21:55
Equações
-
- [soma de bases iguais com incógnita no expoente]
por Debylow » Qui Nov 15, 2012 21:52
- 5 Respostas
- 5317 Exibições
- Última mensagem por jupiterMorais

Dom Dez 11, 2016 11:59
Equações
-
- Potência com incógnita
por Lana Brasil » Ter Abr 09, 2013 16:45
- 3 Respostas
- 3003 Exibições
- Última mensagem por Lana Brasil

Ter Abr 09, 2013 20:22
Álgebra Elementar
-
- potencia expoente com letras.
por joana_fong » Qui Set 01, 2011 19:05
- 3 Respostas
- 6825 Exibições
- Última mensagem por MarceloFantini

Sex Set 02, 2011 14:11
Álgebra Elementar
-
- [Integral] potencia de expoente variante
por KleinIll » Sex Fev 22, 2013 11:14
- 4 Respostas
- 6245 Exibições
- Última mensagem por KleinIll

Sex Fev 22, 2013 13:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.