por willlol01 » Sex Mai 06, 2016 22:28
Olá caros colegas, de antemão agradeço pela eventual ajuda.
O exercício pode ser encontrado no livro Guidorizzi V2, capítulo 26 - Funções diferenciáveis
Seja

uma função diferenciável de uma variável. Mostre que os planos tangentes à superfície

passam todos pela origem.
Tentei trabalhar com a definição, partindo da equação geral do plano com as derivadas parciais da superfície dada, infelizmente devido a essa f diferenciável de uma variável não consigo chegar a conclusão necessária, ademais não creio estar no caminho certo.
-
willlol01
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mai 06, 2016 22:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecatronica
- Andamento: cursando
por adauto martins » Sáb Mai 14, 2016 15:43
aqui é mostrar q. as derivadas parciais existem em (0,0)e sao diferenciaveis:

,p/x=0,sendo f diferenciavel,

é diferenciavel...

...f nao é continua p/y=0,mas fazendo x=0,teremos...

,q. é diferenciavel...logo ambas as derivadas sao diferenciaveis...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações dos Planos Tangentes]
por raimundoocjr » Sex Nov 22, 2013 15:19
- 0 Respostas
- 656 Exibições
- Última mensagem por raimundoocjr

Sex Nov 22, 2013 15:19
Cálculo: Limites, Derivadas e Integrais
-
- Funcão diferenciável
por Cleyson007 » Ter Jun 12, 2012 15:47
- 2 Respostas
- 1967 Exibições
- Última mensagem por joaofonseca

Ter Jun 12, 2012 19:22
Cálculo: Limites, Derivadas e Integrais
-
- [Diferenciabilidade] função diferenciável
por -civil- » Qui Set 29, 2011 14:50
- 1 Respostas
- 1445 Exibições
- Última mensagem por LuizAquino

Sex Set 30, 2011 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Função diferenciável
por fff » Sáb Set 27, 2014 18:31
- 0 Respostas
- 1042 Exibições
- Última mensagem por fff

Sáb Set 27, 2014 18:31
Cálculo: Limites, Derivadas e Integrais
-
- Demonstração continuidade de uma função diferenciável
por Beatriz4 » Sáb Abr 28, 2012 20:58
- 1 Respostas
- 1538 Exibições
- Última mensagem por fraol

Ter Mai 01, 2012 01:40
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.