por GehSillva7 » Dom Fev 28, 2016 18:16
Sejam a e b inteiros tais que 1 =< b < a. Prove que se d = mdc(a, b) e
div(a, b) = n, então a>= d.fn+2 e b >= d.fn+1.
Obs: div (a,b) é o número de divisões necessárias para determinar d = mdc(a, b) através do Algoritmo
de Euclides
-
GehSillva7
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Fev 23, 2014 21:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Balanar - Seg Ago 09, 2010 04:01
Simplifique a expressão com radicais duplos abaixo:
Resposta:
Dica:
(dica : igualar a expressão a

e elevar ao quadrado os dois lados)
Assunto:
Simplifique a expressão com radicais duplos
Autor:
MarceloFantini - Qua Ago 11, 2010 05:46
É só fazer a dica.
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Soprano - Sex Mar 04, 2016 09:49
Olá,
O resultado é igual a 1, certo?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.