• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas Parciais de segunda ordem.

Derivadas Parciais de segunda ordem.

Mensagempor michellepoubel » Qua Set 23, 2015 12:19

Bom dia.
Estou levando uma surra destas duas questões do meu exercício, se alguém puder me ajudar como eu soluciono isso eu agradeço.

A letra b eu comecei fazendo usando a regra do quociente e depois tentei resolvendo os produtos notáveis, porém não tenho certeza do que estou fazendo..kkk A letra A nem sem como começar.

Letra a)f(x,y)=\sqrt[5]{x^3}/\sqrt[7]{y^2}

Letra b)f(x,y)=(4x^2+3Y^3)^3/(x^2+y)^2
michellepoubel
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 23, 2015 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivadas Parciais de segunda ordem.

Mensagempor killerkm » Seg Set 28, 2015 18:11

Imagem
killerkm
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Set 28, 2015 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Derivadas Parciais de segunda ordem.

Mensagempor killerkm » Seg Set 28, 2015 18:21

Lembre que o y permanece como uma constante na questão a), tem que acrescentar na resposta final.
killerkm
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Set 28, 2015 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}