por ronybh » Sex Ago 21, 2015 21:53
Dentro do seguinte cenário:
Um fabricante de armários trabalha com uma linha de montagem de 5 modelos de armários.
Estes são os insumos que cada modelo consume para ser produzido
Armário modelo A Insumos:
Quant. Ítem
1 Porta pequena que abre para esquerda
1 Porta pequena que abre para direita
1 Nicho pequeno
4 Rodízio (opcional)
2 Maçanetas
50ml Óleo para madeira para o polimento do nicho
Armário modelo B Insumos:
Quant. Ítem
2 Porta pequena que abre para esquerda
2 Porta pequena que abre para direita
2 Nicho pequeno
4 Rodízio (opcional)
4 Maçanetas
120ml Óleo para madeira para o polimento do nicho
Armário modelo C Insumos:
Quant. Ítem
2 Porta pequena que abre para esquerda
2 Porta pequena que abre para direita
1 Porta de correr
3 Nicho pequeno
4 Rodízio (opcional)
4 Maçanetas
200ml Óleo para madeira para o polimento do nicho
Armário modelo D Insumos:
Quant. Ítem
3 Nicho pequeno
4 Rodízio (opcional)
4 Maçanetas
200ml Óleo para madeira para o polimento do nicho
As portas podem ser das cores: Branca, Creme e Preta
Estes são os tempos de produção das peças
Tempo em horas Modelo
1h Modelo A
2h Modelo B
3h Modelo C
2h Modelo D
Cada vez que o montador para de montar um modelo e começa outro, ele gasta 4 horas para se organizar.
Estes são os pedidos que chegaram para a semana:
Cliente Encomenda
Acme Inc. 12 Modelo A preto, 12 Modelo B branco, 24 Modelo B branco (sem rodízio), 12 Modelo B creme, 2 Modelo D
Pindorama Ltda 12 Modelo A preto, 7 Modelo A branco, 24 Modelo C branco, 2 Modelo D
Salélite Ltda 12 Modelo B creme, 7 Modelo A branco, 7 Modelo B preto, 7 Modelo C
(todos modelos sem rodízio)
Terra S/A 45 Modelo A preto (sem rodízio), 1 Modelo C
O Galpão tem espaço de estoque apenas para 60 nichos, 100 portas e 200 rodízios. Não deixe o estoque passar deste volume, pois não vai caber no galpão.
A fábrica tem 4 estações de trabalho com um montador em cada.
Seu desafio:
1. Criar uma série de pedidos aos fornecedores, com data de entrega definida, que forneça o material necessário para produção das peças. Os pedidos devem conter a lista de insumos e a data de entrega.
2. Planejar a produção das estações de trabalho, com um cronograma de atividades por semanas: quais produtos montar, em qual ordem. É importante que haja estoque disponível dos produtos para montar.
3. O plano de entrega dos pedidos: com as datas onde todos os ítens estarão disponíveis para os clientes buscarem.
Lembre-se de alternar o mínimo entre modelos, para reduzir o tempo de organização, mas entregue os pedidos o mais rápido possível.
Imprevistos acontecem: entregas atrasam, pessoas faltam. Inclua no seu planejamento uma folga para cobrir imprevistos.
NÃO CONSEGUI RESPONDER E NINGUEM QUE PERGUNTEI SABE
-
ronybh
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Ago 21, 2015 21:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: tecnologia
- Andamento: cursando
por ronybh » Dom Ago 23, 2015 13:28
-
ronybh
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Ago 21, 2015 21:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: tecnologia
- Andamento: cursando
por Fyscher » Ter Ago 25, 2015 08:50
Bom dia,
Alguém sabe a resposta de Solução ??
-
Fyscher
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Ago 25, 2015 08:33
- Formação Escolar: SUPLETIVO
- Área/Curso: Tecnologia da informação
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [porcentagem] Auxilio na solução do problema
por rafynhasantos » Sáb Jun 21, 2008 22:58
- 1 Respostas
- 1520 Exibições
- Última mensagem por Molina

Sáb Jun 21, 2008 23:29
Álgebra Elementar
-
- Solução de Sistema
por yonara » Ter Jun 30, 2009 19:19
- 6 Respostas
- 11170 Exibições
- Última mensagem por Cleyson007

Sáb Jul 11, 2009 14:45
Sistemas de Equações
-
- solução de sistema
por sandi » Sáb Set 26, 2009 02:44
- 3 Respostas
- 5789 Exibições
- Última mensagem por DanielFerreira

Seg Set 28, 2009 10:18
Sistemas de Equações
-
- solução de sistema
por sandi » Sáb Set 26, 2009 22:17
- 3 Respostas
- 6668 Exibições
- Última mensagem por Cleyson007

Dom Set 27, 2009 11:21
Sistemas de Equações
-
- Solução da Equação
por Pri Ferreira » Qua Mar 21, 2012 14:46
- 2 Respostas
- 5659 Exibições
- Última mensagem por Pri Ferreira

Qui Mar 22, 2012 01:18
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.