• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exponenciais

Exponenciais

Mensagempor Souo » Ter Jun 30, 2015 01:42

A soma das raizes da equaç?o 10^{2x} - 4.10^{x} + 3 = 0 é:


A) 4
B) 1 + log3
C) log2 + log3
D) log5
E) log3


N?o consegui chegar no resultado, alguem pode me ajudar?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exponenciais

Mensagempor nakagumahissao » Qui Jul 02, 2015 10:37

10^{2x} - 4.10^{x} + 3 = 0

Pelas propriedades da potenciação, podemos reescrever a equação acima da seguinte forma:

[1] \left(10^{x} \right)^2 - 4.10^{x} + 3 = 0

Agora, podemos fazer a seguinte substituição:

[2] y = 10^{x}

Substituindo [2] em [1], tem-se que:

y^2 - 4y + 3 = 0

\Delta = b^2 - 4ac = 16 - 12 = 4

y = \frac{-b \pm \sqrt[]{\Delta}}{2a} = \frac{4 \pm 2}{2}

y = 3

e

y = 1

Utilizando estes valores obtidos em [1] acima, tem-se que

a) Para y = 3:

y = 3 = 10^{x} \Leftrightarrow \log {3} = \log {10^{x}} \Leftrightarrow   \log {3} = x\log {10} \Leftrightarrow  x= \log {3}

e

b) Para y = 1:

y = 1 = 10^{x} \Leftrightarrow \log {1} = \log {10^{x}} \Leftrightarrow   \log {1} = x\log {10} \Leftrightarrow  x= 0


PORTANTO, a soma das raízes da equação dada será: 1 + log(3), ou seja, a resposta é a letra (B)
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Exponenciais

Mensagempor Souo » Qui Jul 02, 2015 22:53

nakagumahissao escreveu:10^{2x} - 4.10^{x} + 3 = 0

Pelas propriedades da potenciação, podemos reescrever a equação acima da seguinte forma:

[1] \left(10^{x} \right)^2 - 4.10^{x} + 3 = 0

Agora, podemos fazer a seguinte substituição:

[2] y = 10^{x}

Substituindo [2] em [1], tem-se que:

y^2 - 4y + 3 = 0

\Delta = b^2 - 4ac = 16 - 12 = 4

y = \frac{-b \pm \sqrt[]{\Delta}}{2a} = \frac{4 \pm 2}{2}

y = 3

e

y = 1

Utilizando estes valores obtidos em [1] acima, tem-se que

a) Para y = 3:

y = 3 = 10^{x} \Leftrightarrow \log {3} = \log {10^{x}} \Leftrightarrow   \log {3} = x\log {10} \Leftrightarrow  x= \log {3}

e

b) Para y = 1:

y = 1 = 10^{x} \Leftrightarrow \log {1} = \log {10^{x}} \Leftrightarrow   \log {1} = x\log {10} \Leftrightarrow  x= 0


PORTANTO, a soma das raízes da equação dada será: 1 + log(3), ou seja, a resposta é a letra (B)


Entendi, mas o gabarito diz que é a letra E, esta errado?
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exponenciais

Mensagempor nakagumahissao » Sex Jul 03, 2015 21:24

Desculpe-me, 0 + log 3 = log 3 e a resposta é a letra (e) mesmo
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}