• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas Concorrentes

Retas Concorrentes

Mensagempor lsergio_santos » Qui Jun 11, 2015 17:12

Estou auxiliando minha filha com a matéria, mas devido ao longo tempo que me formei no 2º grau, não consigo me lembrar como desenvolver a solução para o problema a seguir:

Determine os valores de m para que as retas de equações y=mx-8 e y-x/m=0 sejam concorrentes. Alguém pode me ajudar a resolver passo a passo e, com urgência?
lsergio_santos
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jun 11, 2015 17:03
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: marketing
Andamento: formado

Re: Retas Concorrentes

Mensagempor nakagumahissao » Qui Jun 11, 2015 19:04

lsergio_santos,


Boa tarde.

Para que as retas de equações y=mx-8 e y-x/m=0 sejam concorrentes deverá existir um ponto (x,y) iguais para as duas equações, ou seja:

Foi dado que:

y=mx-8
y-\frac{x}{m}=0 \Leftrightarrow y = \frac{x}{m}

Assim, igualando as duas equações, tem-se:

mx - 8= \frac{x}{m} \Leftrightarrow m^{2}x - 8m = x \Leftrightarrow m^{2}x - x - 8m = 0

Isolando o x, teremos:

(m^{2}-1)x =8m \Leftrightarrow x = \frac{8m}{(m^{2}-1)}

Usando quaisquer uma das equações dadas, podemos determinar o valor de y (usarei a primeira por ser mais simples):

y = mx - 8 \Rightarrow y = m\left(\frac{8m}{m^2 - 1} \right) \Leftrightarrow y = \frac{8m^{2}}{m^{2} - 1}

Não sei se estão faltando dados no seu enunciado. Se for só isso mesmo, então quaisquer valores para m, com exceção de:

m^2 - 1 \neq 0
m^2 \neq 1
m \neq \pm \sqrt[]{1}
m \neq \pm 1

Ou seja, para valores de m onde o denominador se torna zero (m = 1 ou m = -1, conforme calculamos acima), encontraremos consequentemente os valores de x e y, onde as duas retas se coincidem.

Exemplo:

Tomemos m = 5 (pode ser qualquer valor diferente de 1 e -1):

x = \frac{8m}{(m^{2}-1)} = \frac{8 \times 5}{(5^{2}-1)} = \frac{40}{(25-1)} = \frac{40}{24} = \frac{5}{3}

e

y = \frac{8m^{2}}{m^{2} - 1} = \frac{8 \times 5^{2}}{5^{2} - 1} = \frac{8 \times 25}{25 - 1} = \frac{200}{24} = \frac{25}{3}

Ou seja:

Para m = 5, o ponto (5/3, 25/3) será o ponto onde as duas retas irão se encontrar e as equações das retas serão:

y = 5x - 8 e y - x/5 = 0, para este caso em particular.



Espero ter auxiliado.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59