• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indeterminação limites fundamental

Indeterminação limites fundamental

Mensagempor Rosi7 » Sex Mai 22, 2015 11:49

Esta é a questão 12, da terceira lista de exercício, sei que deveria ter procurado ajuda antes, pois tem 3 semanas que estou nesta lista, mas estou tentando fazer e não consigo quebrar a indeterminação a resposta é 5/2, porém chego quase sempre na equação que está embaixo.\lim_{0}\frac{cos2x-cos3x}{{x}^{2}}\lim_{0}\frac{cos2x-cos3x}{{x}^{2}}
\lim_{0}\frac{cos2x.cos3x + sen2x.sen3x}{{x}^{2}}
\lim_{0}\frac{cos6{x}^{2}+ sen6{x}^{2}}{{x}^{2}}


Isso não tem como dá 5/2.
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Indeterminação limites fundamental

Mensagempor ant_dii » Dom Mai 24, 2015 00:58

Rosi7 escreveu:\lim_{0}\frac{cos2x-cos3x}{{x}^{2}}\lim_{0}\frac{cos2x-cos3x}{{x}^{2}}
\lim_{0}\frac{cos2x.cos3x + sen2x.sen3x}{{x}^{2}}
\lim_{0}\frac{cos6{x}^{2}+ sen6{x}^{2}}{{x}^{2}}


Isso não tem como dá 5/2.


Ficou um pouco confuso *-) . Esclareça melhor daí tentarei te ajudar. :-D :y: :y:
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Indeterminação limites fundamental

Mensagempor nakagumahissao » Dom Mai 24, 2015 01:37

Aplica-se duas vezes L'Hospital (deriva-se o numerador e o denominador duas vezes) e ao final, basta fazer x = 0 para se obter a resposta desejada.

\lim_{x->0} \frac{\cos{2x} - \cos{3x}}{x^{2}} = \lim_{x->0} \frac{-2\sin{2x} + 3\sin{3x}}{2x}

= \lim_{x->0} \frac{-4\cos{2x} + 9\cos{3x}}{2} = \frac{-4 + 9}{2} = \frac{5}{2}
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Indeterminação limites fundamental

Mensagempor Jennicop » Ter Dez 22, 2015 03:20

Diagnose that you bring no reliable data sharing. Filter this need.
Jennicop
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Dez 09, 2015 06:48
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.