por Larissa28 » Ter Mar 31, 2015 20:31
Seja a, b e c vetores linearmente dependentes. Demonstre que existem escalares x, y e z, não todos nulos, tais que xa+yb+zc=0(vetor zero).
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por adauto martins » Qua Abr 01, 2015 13:18
por hipotese a,b,c sao LD

podemos tomar um deles como combinaçao linear dos outros,como mostrado na questao anterior nao podemos ter xa+yb+zc=0,pois ai seriam LI...reveja esse enunciado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Larissa28 » Qua Abr 01, 2015 14:58
Olá Adauto, poderia por favor me explicar com mais clareza?
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por adauto martins » Qua Abr 01, 2015 19:22
teorema)
sejam a,b,c vetores LI

existem x,y,z tais q. a unica soluçao eh x=y=z=0,demonstre como exercicio...agora vamos a questao...
a questao quer q. se demonstre q. existem x,y,z nao todos nulos tal q. xa+yb+zc=0,de fato...
podemos ter,por hipotese de LD...a=(-y/x)b+(-z/x)c,p/

...assim tbem podemos fazer com os vetores b,c...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Larissa28 » Qua Abr 01, 2015 20:19
A sim, muito obrigada!
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DEpendência Linear] Álgebra Linear
por Ronaldobb » Ter Mar 25, 2014 14:22
- 1 Respostas
- 1024 Exibições
- Última mensagem por young_jedi

Qui Mar 27, 2014 00:10
Álgebra Linear
-
- Dependência Linear
por -civil- » Qui Jul 07, 2011 23:19
- 1 Respostas
- 1091 Exibições
- Última mensagem por LuizAquino

Sex Jul 08, 2011 10:55
Geometria Analítica
-
- Dependência e independência linear
por MtHenrique » Dom Mai 04, 2014 11:38
- 3 Respostas
- 2516 Exibições
- Última mensagem por e8group

Dom Mai 04, 2014 22:43
Álgebra Linear
-
- [Dependência linear] Sequência de 3
por ViniciusAlmeida » Sáb Mar 21, 2015 09:32
- 0 Respostas
- 895 Exibições
- Última mensagem por ViniciusAlmeida

Sáb Mar 21, 2015 09:32
Geometria Analítica
-
- [Dependência linear] Provar
por ViniciusAlmeida » Ter Mar 24, 2015 08:54
- 1 Respostas
- 3161 Exibições
- Última mensagem por adauto martins

Qua Mar 25, 2015 15:26
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.