• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Greem

Teorema de Greem

Mensagempor Erico gremio » Ter Fev 10, 2015 12:03

Bom dia pessoal se alguém poder mim ajudar nesta questão ficarei muito grato.

1. Use o teorema de Green para calcular a circulação no sentido anti-horário e o fluxo exterior para o campo F=(x+y)i + (y-x)j sobre o quadrado limitado por x=0 , x=1 , y=0 e y=1.
Erico gremio
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 11, 2013 18:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: cursando

Re: Teorema de Greem

Mensagempor adauto martins » Sex Fev 13, 2015 12:27

\int_{c}^{}F(x,y)dxdy=\int_{c}^{}(M(x,y)dx+N(x,y)dy=\int_{}^{}\int_{R}^{}((\partial N/\partial x)-(\partial M/\partial y))dxdy...F(x,y)=(M,N)=((x+y),(y-x))\Rightarrow I=\int_{}^{}\int_{R}^{}((\partial(y-x)/ \partialx)-(\partial (x+y)/ \partialy))dxdy=\int_{0}^{1}-x.dx(\int_{0}^{1-x}ydy)...agora e calcular em relaçao a x...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Teorema de Greem

Mensagempor adauto martins » Sex Fev 13, 2015 15:09

uma correçao:
I=\int_{0}^{1}\int_{0}^{1-x}(-1-1)dxdy=-2\int_{0}^{1}\int_{0}^{1-x}dydx
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}