• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinação Geral de Arcos Côngruos

Determinação Geral de Arcos Côngruos

Mensagempor danielcp » Sex Dez 26, 2014 17:46

Olá...
Eu estava estudando trigonometria quando surgiu a determinação geral, que é: para graus ? + 360º*k, k E Z e para radianos ? + 2?*k, k E Z.
Mas eu não consigo entender. Na verdade, eu entendo, porém não sei como aplicar e quero saber se é necessário decorá-la... Alguém poderia me dar um exemplo?
Estamos em período de férias, portanto é impossível ir ao plantão de dúvidas do colégio.
Obrigado.
danielcp
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 26, 2014 17:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Determinação Geral de Arcos Côngruos

Mensagempor Russman » Sex Dez 26, 2014 23:19

O, assim chamado, ciclo trigonométrico se divide em 2 \pi radianos que configura uma volta completa. Ou seja, escolha um ponto qualquer sobre uma circunferência. Desloque este ponto sobre esta circunferência até retornar ao ponto original( isto sempre é possível). Desta forma, você terá compreendido o ângulo de 2 \pi radianos. Porém, nada impede que você continue deslocando este ponto. A partir dos 2 \pi radianos você começa a contar até voltar novamente ao ponto original. Nesse caso terá andando duas voltas completas que configuram 4 \pi radianos. Portanto, dizemos que 2 \pi e 4 \pi são arcos côngruos pois representam, a menos de um número inteiros de "voltas", o mesmo ponto da circunferência: o original.

O mesmo procede para dois ângulos quaisquer a e b tais que a-b = 2 \pi *k, onde k é um inteiro e representa o "número de voltas" efetuadas.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59