• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício de função, com minha tentativa !

Exercício de função, com minha tentativa !

Mensagempor Luiz C » Sex Jan 08, 2010 15:07

A soma S de todos os valores inteiros de x que pertencem ao domínio da função f: R -> R definida por f(x)\sqrt[2]{\frac{5}{24 + 2x - x ²}} é igual a :
A. 15
B. 11
C. 9
D. 6
Tentativa
x²-2x-24\neq 0
resolvendo: x'= 6
x''= -4
\frac{5}{24 + 2x - x ²} \geq 0
Claro isso foi uma tentaviva. A resposta é letra C (9)

Obrigado!
Obs: esse A deve ser desconsiderado e apenas x elevado ao quadrado
Luiz C
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 06, 2009 18:40
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletroeletronica
Andamento: formado

Re: Exercício de função, com minha tentativa !

Mensagempor MarceloFantini » Sex Jan 08, 2010 17:43

Boa tarde Luiz!

Você já encontrou as raízes da equação, mas eu plotei um pequeno gráfico da função g(x) = -x^2 +2x +24. Afinal, ela é quem delimita toda a função f(x) = \sqrt \frac{5}{-x^2 +2x +24}, uma vez que a função g(x) não pode ser menor que ou igual a zero (estamos trabalhando no conjunto dos números reais, e não podemos dividir por zero).

Imagem

Basta somar os valores inteiros nesse intervalo: -4 < x < 6.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Exercício de função, com minha tentativa !

Mensagempor Molina » Sex Jan 08, 2010 20:09

Boa noite,

Basicamente temos que satisfazer duas condições:

i) -x^2+2x+24\neq 0

ii) -x^2+2x+24 \geq 0

Unindo as duas condições chegamos a uma definitiva: -x^2+2x+24 > 0

Analisando o gráfico...

funcao.JPG

Podemos ver que ela será positiva no intervalo descrito por Fantini (-4,6). (Note que é um intervalo aberto, ou seja, não incluimos -4 e nem 6)

Somando os números chegamos ao resultado igual ao gabarito: 9.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59