• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Relações] Simetria, Assimetria e Transitividade

[Relações] Simetria, Assimetria e Transitividade

Mensagempor raymondtfr » Ter Nov 25, 2014 14:53

O livro que estou lendo diz o seguinte:

- Simetria
1) \Re diz-se simétrica se, e somente se, quando (a; b)\in \Re. Isto é:
a\Re b \Rightarrow b\Re a
Uma relação \Re sobre um conjunto A não é simétrica se existirem a e b em A, a\neq b, tais que (a; b) \in \Re e (b; a) \not\in \Re.

Até encima tudo bem...

- Transitividade
2) \Re diz-se transitiva se, e somente se, quando (a; b) \in \Re e (b; c) \in \Re, então (a; c) \in \Re.Isto é:
a \Re b e b \Re c) \Rightarrow a \Re c

Aqui vem uma dúvida:
Mas neste exemplo:
a) Seja A = {a; b; c}. A relação sobre A:
\Re = {(a; b), (c; b), (b; a), (a; c)}
Diz que não é transitiva, pois (c; b) \in \Re e (b; a) \in \Re, mas (c; a) \not\in \Re.

DÚVIDA 01 (a): Mas (a; c) \in \Re, (c; b) \in \Re, então (a; b) \in \Re, portanto é transitiva, estou certo?

- Antissimetria
3) \Re diz-se antissimétrica se, e somente se, quando (a; b) \in \Re e (b; a) \in \Re, então, a = b. Isto é:
(a \Re b e b \Re a) \Rightarrow a = b

Mas neste exemplo:
b) Seja A = {1; 2; 3; 4}. A relação sobre A.
\Re ={(1; 3), (4; 2), (4; 4), (2; 4)}
não é antissimétrica, pois (4; 2) \in \Re e também (2; 4) \in \Re.

DÚVIDA 02 (b): Eu entendi o exemplo "b)", pois com os elementos (4; 2) e (2; 4) a relação é obviamente simétrica, porém, o que eu não entendo é a definição dado pelo livro sobre a Antissimetria, que diz que (a \Re b e b \Re a) \Rightarrow a = b. Eu não entendo quando ele diz que a = b, embora num exemplo envolvendo "conjunto de conjuntos" eu tenha entendido perfeitamente.

Agradeço desde já! :-D
raymondtfr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Out 31, 2014 23:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Relações] Simetria, Assimetria e Transitividade

Mensagempor adauto martins » Ter Nov 25, 2014 15:55

1)
\Re:AXAtal q. \Re=={(a,b),(c,b),(b,a),(a,c)}...aqui \Re\subset AXA={(a,a),(a,b),(a,c),(b,b),(b,a),(b,c),(c,a),(c,b),(c,c)},pela a definiçao de \Re,(c,a)nao pertence a \Re,mas pertence a AXA...,logo a relaçao de transitividade em \Re,nao tem o elemento (c,a)...
2)
\Re\subset AXA={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},q. contem o conjunto antisemtrico q. eh={(1,1),(2,2),(3,3),(4,4)},logo...os elementos (2,4),(4,2) pertencentes a \Re,sao simetricos,mas nao antisemtricos,pois nao sao iguais 2\neq 4...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Relações] Simetria, Assimetria e Transitividade

Mensagempor raymondtfr » Ter Nov 25, 2014 16:56

adauto martins escreveu:1)
\Re:AXAtal q. \Re=={(a,b),(c,b),(b,a),(a,c)}...aqui \Re\subset AXA={(a,a),(a,b),(a,c),(b,b),(b,a),(b,c),(c,a),(c,b),(c,c)},pela a definiçao de \Re,(c,a)nao pertence a \Re,mas pertence a AXA...,logo a relaçao de transitividade em \Re,nao tem o elemento (c,a)...
2)
\Re\subset AXA={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},q. contem o conjunto antisemtrico q. eh={(1,1),(2,2),(3,3),(4,4)},logo...os elementos (2,4),(4,2) pertencentes a \Re,sao simetricos,mas nao antisemtricos,pois nao sao iguais 2\neq 4...

Então quer dizer que minha suposição: "DÚVIDA 01 (a): Mas (a; c) \in \Re, (c; b) \in \Re, então (a; b) \in \Re, portanto é transitiva, estou certo?" está errada?

Valeu!
raymondtfr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Out 31, 2014 23:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Relações] Simetria, Assimetria e Transitividade

Mensagempor adauto martins » Ter Nov 25, 2014 17:15

R e transitiva com relaçao aos elementos de R,(a,c),(c,b),(a,b) pertencem a R,entao ha transitividade em aRc e cRb e aRb...esta correto como vc fez...mas se fosse cRb,bRa nao implica cRa,pois (c,a) nao pertence a R,logo nao ha transitividade em R p/(c,a)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Relações] Simetria, Assimetria e Transitividade

Mensagempor raymondtfr » Ter Nov 25, 2014 17:37

Ah tah, entendi. Obrigado por sanar minhas dúvidas.
raymondtfr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Out 31, 2014 23:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.