• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Estruturas Algébricas] Homomorfismo

[Estruturas Algébricas] Homomorfismo

Mensagempor Pessoa Estranha » Qui Nov 13, 2014 22:31

Olá, pessoal!

Resolvi um exercício e gostaria de saber se está certo.

"Mostre que f: Z \rightarrow {Z}_{6}, f(m) = 2\overline{m} é um homomorfismo de grupos."

Minha resolução:

Temos que: {Z}_{6} = \{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5}\}. Observemos que os grupos com os quais estamos trabalhando são ({Z}_{6}, +) e (Z, +). Vamos mostrar que é homomorfismo. Segue: a,b \in Z; f(a + b) = 2.\overline{a+b} = 2(\overline{a} + \overline{b}) = 2\overline{a} + 2\overline{b} = f(a) + f(b). Conseguimos, assim, mostrar que f: Z \rightarrow {Z}_{m} é homomorfismo. Por outro lado, basta observarmos que \forall m \in Z, \overline{m} pode ser escrito como elemento de {Z}_{6}. Por exemplo: \overline{7} = \overline{1} \in {Z}_{6}. Logo, f: Z \rightarrow {Z}_{6} é homomorfismo.

Está certo? Muito obrigada pela ajuda!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor adauto martins » Qui Nov 20, 2014 14:36

correto,e isso mesmo...sendo f:(Z,+)\rightarrow ({Z}_{6},+),somente a a propriedade f(x+y)=f(x)+f(y) com x,y inteiros, e verificada...f tambem tem q. ser bijetiva,o q. e facil verificar ai...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor Pessoa Estranha » Sex Nov 21, 2014 14:29

Olá! Muito obrigada pela ajuda!

Só fiquei com uma dúvida: há necessidade mesmo de mostrar que é bijetiva?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor Pessoa Estranha » Sex Nov 21, 2014 14:32

Depois, o exercício pergunta a Imagem da f. Coloquei assim: Im (f) = {Z}_{6}. Está certo?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Estruturas Algébricas] Homomorfismo

Mensagempor adauto martins » Sex Nov 21, 2014 16:58

nao...me desculpe confundi homomorfismo com isomorfismo... f tem q. ser funçao...qdo funçao bijetiva e homomorfca,entao isomorfica...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59