• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] simples com substituição por U

[Integral] simples com substituição por U

Mensagempor neoreload » Sáb Nov 15, 2014 10:40

Pessoal estou com uma duvida bem besta mesmo. Eu estava aqui resolvendo uma lista de integrais, e cheguei nessa: \int \frac{2+lnx}{x}dx
De inicio achei bem simples, ai usei o método da substituição simples por U e fui fazendo assim:
U=2+lnx
du=\frac{1}{x}dx
dx=\frac{du}{x}
Até ai de boas, ai fiz a substituição: \int \frac{U}{x}\frac{dU}{x}, cortei os dois X, e ficou \int UdU. Ai que ta minha duvida, o que acontece com esse dU? eu coloco o valor de dU que eu encontrei antes? pq se eu fizer isso, fica diferente da resposta que é \frac{1}{2}(2+lnx)^{2}+C
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Integral] simples com substituição por U

Mensagempor nakagumahissao » Seg Nov 17, 2014 10:26

neoreload,

Seria assim:

\int_{}^{}\frac{2 + lnx}{x} dx

u = 2 + lnx \Leftrightarrow u - 2 = lnx \Leftrightarrow {e}^{u-2} = x

Derivando, tem-se que:

du = \frac{1}{x} dx \Rightarrow du = \frac{1}{{e}^{u-2}} dx \Leftrightarrow dx = {e}^{u-2}du

Substituindo-se na integral ficamos com:

\int_{}^{}\frac{2 + lnx}{x} dx = \int_{}^{}\frac{u}{{e}^{u-2}} {e}^{u-2}du = \int_{}^{} u du = \frac{{u}^{2}}{2} + C =

= \frac{(2 + ln x)^2}{2} + C = \frac{1}{2}(2 + ln x)^2 + C
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.